搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双轴应变对单层Janus过渡金属硫族化合物热输运和热电性能的影响

张敏 唐桂华 史晓磊 李一斐 赵欣 黄滇 陈志刚

引用本文:
Citation:

双轴应变对单层Janus过渡金属硫族化合物热输运和热电性能的影响

张敏, 唐桂华, 史晓磊, 李一斐, 赵欣, 黄滇, 陈志刚

Influence of biaxial strain effects on thermal transport and thermoelectric performance of Janus transition metal dichalcogenide monolayers

ZHANG Min, TANG Guihua, SHI Xiaolei, LI Yifei, ZHAO Xin, HUANG Dian, CHEN Zhigang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • Janus过渡金属硫族化物单分子层具有独特的晶体结构和物理化学性质, 在微纳尺度电子器件及热电转换领域具有巨大的应用潜力. 深入探索其热输运和热电性能对于实际应用至关重要. 本文采用基于密度泛函理论的第一性原理计算, 研究了拉伸应变对Janus过渡金属硫族化合物单分子层(PtSSe, PtTeSe, MoSSe, MoTeSe, WSSe和WTeSe)声子热输运性能和热电性能的影响. 对于热输运性能, 在0%—10%的拉伸应变范围内, PtSSe, MoSSe和WSSe单分子层的晶格热导率单调减小; PtTeSe, MoTeSe和WTeSe单分子层的晶格热导率先增大后减小. 通过对声子模层面的深入分析, 发现声子寿命是影响晶格热导率在拉伸应变下变化的主导因素. 对于热电性能, 本工作发现PtTeSe单分子层表现出极佳的热电性能, 室温下其热电优值为0.91, 在10%的拉伸应变下, 热电优值达1.31. 700 K下, p型PtTeSe单分子层的热电优值高达3.96, n型PtTeSe单分子层的热电优值高达2.38. 本研究表明PtTeSe单分子层是具有潜力的热电材料, 应变工程是调控Janus过渡金属硫族化物单分子层热输运和热电性能的有效策略.
    Janus transition metal dichalcogenide monolayers, characterized by antisymmetric crystal structures and unique physical properties, show great potential applications in micro/nano-electronic devices and thermoelectrics. In this work, the strain-tuned phonon thermal transport and thermoelectric performance of six Janus transition metal dichalcogenide monolayers are systematically investigated by first-principles calculations. This study focuses on monolayers of PtSSe and PtTeSe with a 1T-phase crystal structure, as well as monolayers of MoSSe, MoTeSe, WSSe, and WTeSe with a 1H-phase crystal structure. For all these monolayers, first-principles calculations are performed using the open-source software Quantum ESPRESSO. The lattice thermal conductivity is obtained based on lattice dynamics and iterative solutions of the Boltzmann transport equation. The thermal conductivities of PtSSe, MoSSe, and WSSe monolayers are generally higher than those of PtTeSe, MoTeSe, and WTeSe. Acoustic phonons are responsible for the majority of thermal transport, contributing over 95%. Under unstrained conditions, monolayer PtSSe demonstrates a superior thermal conductivity of 104 W·m−1·K−1, making it advantageous for thermal management applications in electronic devices. Under tensile strain, the thermal conductivities of PtSSe, MoSSe, and WSSe monolayers exhibit a monotonic decrease trend; however, for PtTeSe, MoTeSe, and WTeSe monolayers, their thermal conductivities initially show an increase trend, followed by a subsequent decrease trend. Under a 10% tensile strain, the thermal conductivities of these six Janus monolayers all demonstrate a reduction exceeding 60%. Furthermore, this work provides a comprehensive analysis of the influences of strain on specific heat capacity, phonon group velocity, and phonon lifetime. The phonon mode-level analysis and cross-calculated thermal conductivity (with specific heat capacity, phonon group velocity, and phonon lifetime replaced by values under different strain conditions) reveal that phonon lifetime is the dominant factor governing thermal conductivity under strain. For electrical transport properties, calculations are performed using the Boltzmann transport equation based on deformation potential theory. At room temperature, the thermoelectric figure of merit (ZT) for PtTeSe is 0.91 without strain, which can be improved to 1.31 under 10% tensile strain. The ZT value reaches as high as 3.96 for p-type PtTeSe and 2.38 for n-type PtTeSe at 700 K, indicating that the PtTeSe monolayer is a highly promising thermoelectric material. Strain-induced enhancement in the thermoelectric performance of PtTeSe is facilitated by reducing lattice thermal conductivity and reconfigurating the band structure. This work demonstrates that strain engineering is an effective strategy for adjusting the thermal transport and thermoelectric properties of Janus transition metal dichalcogenide monolayers.
  • 图 1  晶体结构的俯视图和侧视图 (a) PtXY单分子层; (b) MoXY和WXY单分子层(X = S/Te, Y = Se)

    Fig. 1.  Top view and side view of crystal structures: (a) PtXY monolayers; (b) MoXY and WXY monolayers (X = S/Te, Y = Se).

    图 2  不同应变下 Janus TMDCs 单分子层的室温热导率

    Fig. 2.  Thermal conductivity of Janus TMDCs monolayers under different strains at room temperature.

    图 3  不同应变作用下Janus TMDCs单分子层的声子色散关系 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Fig. 3.  Phonon dispersions of (a) PtSSe, (b) MoSSe, (c) WSSe, (d) PtTeSe, (e) MoTeSe, and (f) WTeSe monolayers under different strains.

    图 4  不同应变作用下Janus TMDCs单分子层的体积比热容

    Fig. 4.  Heat capacity of Janus TMDCs monolayers under different strains.

    图 5  不同应变作用下Janus TMDCs单分子层的声子群速度 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Fig. 5.  Phonon group velocity of Janus TMDCs monolayers under different strains: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 6  不同应变作用下Janus TMDCs单分子层的声子寿命 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Fig. 6.  Phonon lifetime of Janus TMDCs monolayers under different strains: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 7  采用不同应变作用下的比热容、声子群速度和声子寿命交叉计算的Janus TMDCs单分子层热导率 (a) PtSSe, MoSSe和WSSe; (b) PtTeSe, MoTeSe和WTeSe

    Fig. 7.  Cross-calculated thermal conductivity with heat capacity, phonon group velocity, and phonon lifetime replaced by values under different strains for Janus TMDCs monolayers: (a) PtSSe, MoSSe, and WSSe; (b) PtTeSe, MoTeSe, and WTeSe.

    图 8  不同应变作用下Janus TMDCs单分子层的能带结构 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Fig. 8.  Band structures of Janus TMDCs monolayers under different strains: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 9  300 K下塞贝克系数随载流子浓度的变化 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Fig. 9.  Seebeck coefficient as a function of carrier concentration at 300 K: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 10  室温下电导率随载流子浓度的变化 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Fig. 10.  Electrical conductivity as a function of carrier concentration at 300 K: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 11  300 K下热电优值随载流子浓度的变化 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Fig. 11.  ZT value as a function of carrier concentration at 300 K: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 12  热电优值随温度的变化 (a) p型热电; (b) n型热电

    Fig. 12.  ZT value as a function of temperature: (a) p-type; (b) n-type.

  • [1]

    Zhang Y, Lü Q, Wang H, Zhao S, Xiong Q, Lü R, Zhang X 2022 Science 378 169Google Scholar

    [2]

    武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂 2023 物理学报 72 118101Google Scholar

    Wu P, Tan L, Li W, Cao L W, Zhao J B, Qu Y, Li A 2023 Acta Phys. Sin. 72 118101Google Scholar

    [3]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [4]

    赵欣, 唐桂华, 李一斐, 张敏 2021 工程热物理学报 42 2455

    Zhao X, Tang G H, Li Y F, Zhang M 2021 Journal of Engineering Thermophysics 42 2455

    [5]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [6]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [7]

    Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A, Meyer H M, III, Lorenz M, Chisholm M F, Ivanov I N, Rouleau C M, Duscher G, Xiao K, Geohegan D B 2020 ACS Nano 14 3896Google Scholar

    [8]

    Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petrić M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Müller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320Google Scholar

    [9]

    Sant R, Gay M, Marty A, Lisi S, Harrabi R, Vergnaud C, Dau M T, Weng X, Coraux J, Gauthier N, Renault O, Renaud G, Jamet M 2020 npj 2D Mater. Appl. 4 41

    [10]

    Qin Y, Sayyad M, Montblanch A R P, Feuer M S G, Dey D, Blei M, Sailus R, Kara D M, Shen Y, Yang S, Botana A S, Atature M, Tongay S 2022 Adv. Mater. 34 2106222Google Scholar

    [11]

    Huang S J, Zhang T, Zeng Z Y, Geng H Y, Chen X R 2024 Vacuum 224 113143Google Scholar

    [12]

    Liu J, Shen T, Wang L, Ren J C, Liu W, Li S 2024 Adv. Funct. Mater. 34 2401737Google Scholar

    [13]

    Cui H, Yang T, Peng X, Zhang G 2022 J. Mater. Res. Technol. 18 1218Google Scholar

    [14]

    张德贺, 周文哲, 李奥林, 欧阳方平 2021 物理学报 70 096301Google Scholar

    Zhang D H, Zhou W Z, Li A L, Ouyang F P 2021 Acta Phys. Sin. 70 096301Google Scholar

    [15]

    张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学 2023 物理学报 72 046201Google Scholar

    Zhang Y H, Li X B, Zhan C X, Wang M Q, Pu Y X 2023 Acta Phys. Sin. 72 046201Google Scholar

    [16]

    Tao W L, Yi M, E. H C, Yan C, Ji G F 2019 Philos. Mag. 99 1025Google Scholar

    [17]

    Liu C, Yao M, Yang J, Xi J, Ke X 2020 Mater. Today Phys. 15 100277Google Scholar

    [18]

    Bera J, Betal A, Sahu S 2021 J. Alloys Compd. 872 159704Google Scholar

    [19]

    Guo S D 2018 Phys. Chem. Chem. Phys. 20 7236Google Scholar

    [20]

    Han D, Qin H, Tu H, Chen Y, Sun H, Xue Y, Zeng X 2025 J. Electron. Mater. 54 2180Google Scholar

    [21]

    Tao W L, Lan J Q, Hu C E, Cheng Y, Zhu J, Geng H Y 2020 J. Appl. Phys. 127 035101Google Scholar

    [22]

    Guo S D, Li Y F, Guo X S 2019 Comput. Mater. Sci. 161 16Google Scholar

    [23]

    Patel A, Singh D, Sonvane Y, Thakor P B, Ahuja R 2020 ACS Appl. Mater. Interfaces 12 46212Google Scholar

    [24]

    Han D, Wang M, Yang X, Du M, Cheng L, Wang X 2022 J. Alloys Compd. 903 163850Google Scholar

    [25]

    Zhang M, Tang G H, Li Y F, Fu B, Wang X Y 2020 Int. J. Thermophys. 41 57Google Scholar

    [26]

    Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104Google Scholar

    [27]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [28]

    Pan L, Carrete J, Wang Z 2022 J. Phys. Condens. Mater. 34 015303Google Scholar

    [29]

    Ahmad S, Idrees M, Khan F, Nguyen C V, Ahmad I, Amin B 2021 Chem. Phys. Lett. 776 138689Google Scholar

    [30]

    Ahmad S, Khan F, Amin B, Ahmad I 2021 J. Solid State Chem. 299 122189Google Scholar

    [31]

    Wang C, Chen Y-X, Gao G, Xu K, Shao H 2022 Appl. Surf. Sci. 593 153402Google Scholar

    [32]

    Chaurasiya R, Tyagi S, Singh N, Auluck S, Dixit A 2021 J. Alloys Compd. 855 157304Google Scholar

    [33]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys. Condens. Mater. 21 395502Google Scholar

    [34]

    Hamann D R 2013 Phys. Rev. B 88 085117Google Scholar

    [35]

    Li W, Carrete J, A. Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [36]

    Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [37]

    李一斐, 唐桂华, 张敏, 赵欣 2022 工程热物理学报 43 479

    Li Y F, Tang G H, Zhang M, Zhao X 2022 Journal of Engineering Thermophysics 43 479

    [38]

    Han D, Yang X, Du M, Xin G, Zhang J, Wang X, Cheng L 2021 Nanoscale 13 7176Google Scholar

    [39]

    Tang Z, Wang X, Li J, He C, Chen M, Tang C, Ouyang T 2023 Phys. Rev. B 108 214304Google Scholar

    [40]

    Bhojani A K, Kagdada H L, Singh D K 2025 Phys. Rev. B 111 085419Google Scholar

    [41]

    Yuan K, Zhang X, Tang D, Hu M 2018 Phys. Rev. B 98 144303Google Scholar

    [42]

    Tang Z Y, Wang X X, Li J, He C Y, Tang C, Wang H M, Chen M X, Ouyang T 2023 Appl. Phys. Lett. 122 172203Google Scholar

    [43]

    Tang Z, Wang X, He C, Li J, Chen M, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320Google Scholar

    [44]

    Lindsay L, Broido D A, Carrete J, Mingo N, Reinecke T L 2015 Phys. Rev. B 91 121202Google Scholar

    [45]

    Zhang M, Tang G, Li Y 2021 ACS Omega 6 3980Google Scholar

    [46]

    王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣 2021 物理学报 70 116301Google Scholar

    Wang Y, Chen N D, Yang C, Zeng Z Y, Hu C E, Chen X R 2021 Acta Phys. Sin. 70 116301Google Scholar

    [47]

    Li Y F, Tang G H, Fu B, Zhang M, Zhao X 2020 ACS Appl. Energy Mater. 3 9234Google Scholar

    [48]

    Wang N, Li M, Xiao H, Gao Z, Liu Z, Zu X, Li S, Qiao L 2021 npj Comput. Mater. 7 18Google Scholar

  • [1] 李祗烁, 曹欣睿, 吴顺情, 吴建洋, 文玉华, 朱梓忠. 单层Janus MoSSe在不同手性角单轴拉伸应变下力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250437
    [2] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20231979
    [3] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, doi: 10.7498/aps.73.20240432
    [4] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, doi: 10.7498/aps.71.20220179
    [5] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, doi: 10.7498/aps.71.20212316
    [6] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220939
    [7] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20221019
    [8] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210145
    [9] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响. 物理学报, doi: 10.7498/aps.69.20200539
    [10] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20182266
    [11] 朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕. Mg2Si化合物在静水压下的电子输运性能研究. 物理学报, doi: 10.7498/aps.64.077103
    [12] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.62.167502
    [13] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, doi: 10.7498/aps.62.017302
    [14] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.61.108801
    [15] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, doi: 10.7498/aps.61.227102
    [16] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, doi: 10.7498/aps.60.018403
    [17] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究. 物理学报, doi: 10.7498/aps.59.8783
    [18] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, doi: 10.7498/aps.57.6488
    [19] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, doi: 10.7498/aps.54.5308
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, doi: 10.7498/aps.54.328
计量
  • 文章访问数:  374
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-07
  • 修回日期:  2025-04-07
  • 上网日期:  2025-04-29

/

返回文章
返回