搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg2Si化合物在静水压下的电子输运性能研究

朱岩 张新宇 张素红 马明臻 刘日平 田宏燕

引用本文:
Citation:

Mg2Si化合物在静水压下的电子输运性能研究

朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕

Electron transport properties of Mg2Si under hydrostatic pressures

Zhu Yan, Zhang Xin-Yu, Zhang Su-Hong, Ma Ming-Zhen, Liu Ri-Ping, Tian Hong-Yan
PDF
导出引用
  • 本文基于第一性原理采用全电势线性缀加平面波方法和波尔兹曼理论运算了在静水压下Mg2Si的电子和热电性能. 研究发现, 对于n型载流子控制Mg2Si输运性质, 应变达到0.02时, 室温情况下, 热电性能参数得到了明显提高, 其塞贝克系数增幅为26%, 功率因数增幅47%; 高温时, 功率因数增幅45%. 而对于主要载流子为空穴时, 其热电系数最值出现在应变为0.01时. 但其数值与未施加静水压的结构相比提高不多, 表明对于p型Mg2Si半导体应变对其输运性能的影响不大. 并且结合电子能带结构图解释这些现象.
    The electronic and thermoelectric properties of Mg2Si under hydrostatic pressures have been investigated using the first principles calculations with general potential linearized augmented plane-wave method and the semiclassical Boltzmann theory with the rigid band approach and the constant scattering time relaxation approximation. In this work, the hydrostatic pressure is simulated by applying equiaxial strain method for the cubic anti-fluorite structure of Mg2Si in space group Fm3m. The strain values ranging from -0.03 to 0.03 describe the compressive and tensile Processes under pressure. The band structure, electrical conductivity, Seebeck coefficient and power factor have been calculated and analyzed in detail.#br#From the band structure in Mg2Si one can see that the bottom of the conduction band shows significant changes under strains. Especially, when the strain is up to 0.02, there are two twofold-degeneracy states occurring at the center of the Brillouin zone. The top of the valence band shows a slight change due to the strain effect. For the unstrained structure, our calculated thermoelectric data are in accordance with other reports. Moreover, the results indicate that when the value of strain is up to 0.02, the transport properties get an optimal functioning of Mg2Si due to electron doping. At 300 K, the Seebeck coefficient improves obviously and comes up to 126%. And the power factor is up to 47% (45%) at T=300 K (700 K). Consequently, the thermoelectric properties can be improved through applying negative pressures to the Mg2Si crystal. For the case of hole doping, the transport parameters change obviously at a small strain value, and change gently at a high strain values. When the strain is up to 0.01, the Seebeck coefficient reaches the maximum value 439 μV/K-1. But, the power factor only increases 0.9%–2%. Hence, we can conclude that the hydrostatic pressures have a slight influence on the thermoelectric properties of hole-doped materials.
    • 基金项目: 国家自然科学基金(批准号: 51002130, 51121061), 燕山大学优秀博士生科学基金和河北省高等学校科学技术研究项目(批准号:Z2011158) 资助的课题.
    • Funds: Project supported by the National Natural swence Foundation of China (Grant Nos. 51002130, 51121061), the Science Foundation of Yanshan University for the Excellent Ph. D. Students, and Education Department of Hebei Province (Grant No. Z2011158).
    [1]

    Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Kondtantinov P P, Samunin A Y, Vedernikov M V 2006 Phys. Rev. B 74 045207

    [2]

    Han X P, Shao G S 2012 J. Appl. Phys. 112 013715

    [3]

    Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 166601

    [4]

    Hinsche N F, Yavorsky B Y, Gradhand M, Czerner M, Winkler M, KÖnig J, BÖttner H, Mertig I, Zahn P 2012 Phys. Rev. B 86 085323

    [5]

    2013 Scripta Mater 69 606

    [6]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 8 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 绕光辉 2012 物理学报 8 086101]

    [7]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 物理学报 63 057201]

    [8]

    Xue L, Xu B, Yi L 2014 Chin. Phys. B 23 037103

    [9]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Li J B, Liu G Y 2012 Chin. Phys. B 21 106101

    [10]

    Balout H, Boulet P, Record M C 2014 Intermetallics 50 8

    [11]

    Blaha P, Schwarz K, Sorantin P, Trickey S B 1990 Comput. Phys. Commun. 59 399

    [12]

    Madsen G K H, BoltzTraP S D J 2006 Comput. Phys. Commun. 175 67

    [13]

    Anastassakis E, Hawranek J P 1972 Phys. Rev. B 5 4003

    [14]

    Zhang J, Fan Z, WangY Q, Zhou B L 2000 Mater. Sci. Eng. A 281 104

    [15]

    Hinsche N F, Mertig I, Zahn P 2011 J. Phys.: Condens. Matter 23 295502

    [16]

    Koenig P, Lynch D W, Danielson G C 1961 J. Phys. Chem. Solids 20 122

    [17]

    Ong K P, Singh D J, Wu P 2011 Phys. Rev. B 83 115110

    [18]

    Boulet P, Record M C 2011 J. Chem. Phys. 135 234702

    [19]

    Akasaka M, Iida T, Matsumoto A, Yamanaka K, Takanashi Y, Imai T, Hamada N 2008 J. Appl. Phys. 104 013703

    [20]

    Tani J I, Kido H 2007 Intermetallics 15 1202

  • [1]

    Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Kondtantinov P P, Samunin A Y, Vedernikov M V 2006 Phys. Rev. B 74 045207

    [2]

    Han X P, Shao G S 2012 J. Appl. Phys. 112 013715

    [3]

    Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 166601

    [4]

    Hinsche N F, Yavorsky B Y, Gradhand M, Czerner M, Winkler M, KÖnig J, BÖttner H, Mertig I, Zahn P 2012 Phys. Rev. B 86 085323

    [5]

    2013 Scripta Mater 69 606

    [6]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 8 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 绕光辉 2012 物理学报 8 086101]

    [7]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 物理学报 63 057201]

    [8]

    Xue L, Xu B, Yi L 2014 Chin. Phys. B 23 037103

    [9]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Li J B, Liu G Y 2012 Chin. Phys. B 21 106101

    [10]

    Balout H, Boulet P, Record M C 2014 Intermetallics 50 8

    [11]

    Blaha P, Schwarz K, Sorantin P, Trickey S B 1990 Comput. Phys. Commun. 59 399

    [12]

    Madsen G K H, BoltzTraP S D J 2006 Comput. Phys. Commun. 175 67

    [13]

    Anastassakis E, Hawranek J P 1972 Phys. Rev. B 5 4003

    [14]

    Zhang J, Fan Z, WangY Q, Zhou B L 2000 Mater. Sci. Eng. A 281 104

    [15]

    Hinsche N F, Mertig I, Zahn P 2011 J. Phys.: Condens. Matter 23 295502

    [16]

    Koenig P, Lynch D W, Danielson G C 1961 J. Phys. Chem. Solids 20 122

    [17]

    Ong K P, Singh D J, Wu P 2011 Phys. Rev. B 83 115110

    [18]

    Boulet P, Record M C 2011 J. Chem. Phys. 135 234702

    [19]

    Akasaka M, Iida T, Matsumoto A, Yamanaka K, Takanashi Y, Imai T, Hamada N 2008 J. Appl. Phys. 104 013703

    [20]

    Tani J I, Kido H 2007 Intermetallics 15 1202

计量
  • 文章访问数:  1825
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-07
  • 修回日期:  2014-11-05
  • 刊出日期:  2015-04-05

Mg2Si化合物在静水压下的电子输运性能研究

  • 1. 燕山大学, 亚稳材料制备技术与科学国家重点实验室, 秦皇岛 066004;
  • 2. 河北科技师范学院物理系, 秦皇岛 066004
    基金项目: 国家自然科学基金(批准号: 51002130, 51121061), 燕山大学优秀博士生科学基金和河北省高等学校科学技术研究项目(批准号:Z2011158) 资助的课题.

摘要: 本文基于第一性原理采用全电势线性缀加平面波方法和波尔兹曼理论运算了在静水压下Mg2Si的电子和热电性能. 研究发现, 对于n型载流子控制Mg2Si输运性质, 应变达到0.02时, 室温情况下, 热电性能参数得到了明显提高, 其塞贝克系数增幅为26%, 功率因数增幅47%; 高温时, 功率因数增幅45%. 而对于主要载流子为空穴时, 其热电系数最值出现在应变为0.01时. 但其数值与未施加静水压的结构相比提高不多, 表明对于p型Mg2Si半导体应变对其输运性能的影响不大. 并且结合电子能带结构图解释这些现象.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回