搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性多层膜CoFeB/Ni的垂直磁各向异性研究

俱海浪 王洪信 程鹏 李宝河 陈晓白 刘帅 于广华

引用本文:
Citation:

磁性多层膜CoFeB/Ni的垂直磁各向异性研究

俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华

Perpendicular magnetic anisotropy study of CoFeB/Ni multilayers by anomalous Hall effect

Ju Hai-Lang, Wang Hong-Xin, Cheng Peng, Li Bao-He, Chen Xiao-Bai, Liu Shuai, Yu Guang-Hua
PDF
导出引用
  • 应用磁控溅射法在玻璃基片上制备了以Pt为底层的CoFeB/Ni多层膜结构样品,通过测试样品的反常霍尔效应研究多层膜的垂直磁各向异性(perpendicular magnetic anisotropy,PMA),对影响多层膜垂直磁各向异性的各因素进行了调制.实验结果表明,多层膜的底层厚度、周期层中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要影响.通过对样品各参数的逐步调制,最终获得了具有良好PMA的CoFeB/Ni多层膜最佳样品Pt(4)/[CoFeB(0.4)/Ni(0.3)]3/Pt(1.0).经测试计算,该样品的各向异性常数Keff为2.2106 erg/cm3(1 erg/cm3=10-1J/m3),具有良好的PMA性能,样品总厚度为7.1 nm,完全满足制备垂直磁结构材料的厚度要求,可进一步研究其在器件中的集成与应用.
    The CoFeB/Ni multilayers with Pt underlayer are prepared by magnetron sputtering technique and the perpendicular magnetic anisotropy (PMA) of each of the samples is studied by anomalous Hall effect (AHE) method. The PMA of CoFeB/Ni multilayer is dependent on the thickness of Pt, Co, CoFeB and the number of CoFeB/Ni bilayers strongly. It is found that the sample structured as Pt(4)/[CoFeB(tCoFeB)/Ni(0.3)]2/Pt(1.0) has a good PMA when the CoFeB thickness is 0.4 nm for the interface anisotropy dominated in the multilayer. So the CoFeB thickness is fixed at 0.4 nm. The effect of Ni thickness on multilayer PMA is also studied. The PMA of the sample is kept relatively well and the Hall resistance (RHall) decreases as the Ni thickness increases. Meanwhile the coercivity (HC) fluctuates in a small range. When the Ni thickness is 0.3 nm, the remanence squareness of the sample is very good and the Hall effect is strongest. The influence of period number n on the sample PMA is significant for it changes the interface of the sample. When n is 3, the sample has a very good remanence squareness, for the interface effect is obvious and the magnetization reversal process is consistent. The Pt underlayer shows a great effect on the PMA performance of the sample, for it can change the (111) texture of the multilayer. The results show that when the Pt thickness is 4 nm, the remanence squareness is good and the sample has a suitable HC. So the optimum CoFeB/Ni multilayer with an excellent performance of PMA is structured as Pt(4)/[CoFeB(0.4)/Ni(0.3)]3/Pt(1.0). Its anisotropy constant Keff is 2.2106 erg/cm3 (1 erg/cm3=10-1 J/m3) which indicates that the sample has an excellent PMA and its interface anisotropy is the main reason for making the Keff have a larger value. The magnetic layer thickness of the optimum sample is 2.1 nm and the total thickness of it is less than 8 nm. The integration with device can be studied further. Furthermore, HC of the CoFeB/Ni multilayer is relatively small and can be increased by inserting the oxidation layer or other ways.
      通信作者: 李宝河, libh@btbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174020)和北京工商大学科研启动基金(批准号:QNJJ2016-18)资助的课题.
      Corresponding author: Li Bao-He, libh@btbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174020) and the Young teachers' Scientific Research Fund of Beijing Technology and Business University, China (Grant No. QNJJ2016-18).
    [1]

    Chen Y, Wang X, Li H, Xi H, Yan Y, Zhu W 2010 IEEE Trans. Very Large Scale Integration (VLSI) Systems 18 1724

    [2]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [3]

    Sbiaa R, Meng H, Piramanayagam S N 2011 Physica Status Solidi 5 413

    [4]

    Yu T, Liu Y, Zhu Z Y, Zhong H C, Zhu K G, Gou C L 2015 Acta Phys. Sin. 64 247504 (in Chinese)[于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲2015物理学报 64 247504]

    [5]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246

    [6]

    Yakushiyi K, Saruya T, Kubota H, Fukushima A, Na-gahama T, Yuasa S, Ando K 2010 Appl. Phys. Lett. 97 232508

    [7]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

    [8]

    Wang W G, Hageman S, Li M 2011 Appl. Phys. Lett. 99 102502

    [9]

    Worledge D C, Hu G, Abraham D W, Sun J Z, Trouil-loud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan EJ, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501

    [10]

    Wu S B, Chen S, Yang X F, Zhu T 2012 Sci. China:Phys. Mech. Astron. 42 70 (in Chinese)[吴少兵, 陈实, 杨晓非, 朱涛2012中国科学:物理学力学天文学 42 70]

    [11]

    Jung J H, Lim S H, Lee S R 2010 Appl. Phys. Lett. 96 042503

    [12]

    Fowley C, Decorde N, Oguz K, Rode K, Kurt H, Coey J M D 2010 IEEE Trans. Magn. 46 2116

    [13]

    Liu N, Wang H, Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)[刘娜, 王海, 朱涛2012物理学报 61 167504]

    [14]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D 2006 Nat. Mater. 5 210

    [15]

    Meng H, Wang J P 2006 Appl. Phys. Lett. 88 172506

    [16]

    Kou S P, L R, Liang J Q 2002 Chin. Phys. Lett. 19 1525

    [17]

    Yu R, Zhang W, Weng H M, Dai X, Fang Z 2010 Physics 39 618 (in Chinese)[余睿, 张薇, 翁红明, 戴希, 方忠2010物理 39 618]

    [18]

    Kohn W, Luttinger J M 1957 Phys. Rev. 108 590

    [19]

    Luttinger J M 1958 Phys. Rev. 112 739

    [20]

    Berger L 1970 Phys. Rev. B 2 4959

    [21]

    Smith J 1973 Phys. Rev. B 8 2349

    [22]

    Berger L 1973 Phys. Rev. B 8 2351

    [23]

    Smith J 1978 Phys. Rev. B 17 1450

    [24]

    McGuire T R, Gambino R J, Handley R C O 1980 The Hall Effect and Its Applications (Vol. 1) (New York:Plenum Publishing Corp.) p137

    [25]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2008 Appl. Phys. Lett. 92 102508

    [26]

    Ding Y F, Judy J H, Wang J P 2005 J. Appl. Phys. 97 10J117

    [27]

    Fu Y Q, Liu Y, Jin C, Yu G H 2009 Acta Phys. Sin. 58 7977 (in Chinese)[付艳强, 刘洋, 金川, 于广华2009物理学报 58 7977]

    [28]

    Johnsony M T, Bloemenzx P J H, Broedery F J A, Vries J J 1996 Rep. Prog. Phys. 59 1409

  • [1]

    Chen Y, Wang X, Li H, Xi H, Yan Y, Zhu W 2010 IEEE Trans. Very Large Scale Integration (VLSI) Systems 18 1724

    [2]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [3]

    Sbiaa R, Meng H, Piramanayagam S N 2011 Physica Status Solidi 5 413

    [4]

    Yu T, Liu Y, Zhu Z Y, Zhong H C, Zhu K G, Gou C L 2015 Acta Phys. Sin. 64 247504 (in Chinese)[于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲2015物理学报 64 247504]

    [5]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246

    [6]

    Yakushiyi K, Saruya T, Kubota H, Fukushima A, Na-gahama T, Yuasa S, Ando K 2010 Appl. Phys. Lett. 97 232508

    [7]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

    [8]

    Wang W G, Hageman S, Li M 2011 Appl. Phys. Lett. 99 102502

    [9]

    Worledge D C, Hu G, Abraham D W, Sun J Z, Trouil-loud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan EJ, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501

    [10]

    Wu S B, Chen S, Yang X F, Zhu T 2012 Sci. China:Phys. Mech. Astron. 42 70 (in Chinese)[吴少兵, 陈实, 杨晓非, 朱涛2012中国科学:物理学力学天文学 42 70]

    [11]

    Jung J H, Lim S H, Lee S R 2010 Appl. Phys. Lett. 96 042503

    [12]

    Fowley C, Decorde N, Oguz K, Rode K, Kurt H, Coey J M D 2010 IEEE Trans. Magn. 46 2116

    [13]

    Liu N, Wang H, Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)[刘娜, 王海, 朱涛2012物理学报 61 167504]

    [14]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D 2006 Nat. Mater. 5 210

    [15]

    Meng H, Wang J P 2006 Appl. Phys. Lett. 88 172506

    [16]

    Kou S P, L R, Liang J Q 2002 Chin. Phys. Lett. 19 1525

    [17]

    Yu R, Zhang W, Weng H M, Dai X, Fang Z 2010 Physics 39 618 (in Chinese)[余睿, 张薇, 翁红明, 戴希, 方忠2010物理 39 618]

    [18]

    Kohn W, Luttinger J M 1957 Phys. Rev. 108 590

    [19]

    Luttinger J M 1958 Phys. Rev. 112 739

    [20]

    Berger L 1970 Phys. Rev. B 2 4959

    [21]

    Smith J 1973 Phys. Rev. B 8 2349

    [22]

    Berger L 1973 Phys. Rev. B 8 2351

    [23]

    Smith J 1978 Phys. Rev. B 17 1450

    [24]

    McGuire T R, Gambino R J, Handley R C O 1980 The Hall Effect and Its Applications (Vol. 1) (New York:Plenum Publishing Corp.) p137

    [25]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2008 Appl. Phys. Lett. 92 102508

    [26]

    Ding Y F, Judy J H, Wang J P 2005 J. Appl. Phys. 97 10J117

    [27]

    Fu Y Q, Liu Y, Jin C, Yu G H 2009 Acta Phys. Sin. 58 7977 (in Chinese)[付艳强, 刘洋, 金川, 于广华2009物理学报 58 7977]

    [28]

    Johnsony M T, Bloemenzx P J H, Broedery F J A, Vries J J 1996 Rep. Prog. Phys. 59 1409

  • [1] 刘晓伟, 熊俊林, 王利铮, 梁世军, 程斌, 缪峰. 单晶Ta3FeS6薄膜中巨大的矫顽场. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220699
    [2] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 物理学报, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [3] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运. 物理学报, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [4] 常远思, 李刚, 张颖, 蔡建旺. 过量B的Ta/CoFeB/MgO薄膜垂直各向异性和温度稳定性的增强. 物理学报, 2017, 66(1): 017502. doi: 10.7498/aps.66.017502
    [5] 于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲. Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响. 物理学报, 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [6] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 物理学报, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [7] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [8] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [9] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究. 物理学报, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [10] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [11] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [12] 付艳强, 刘洋, 金川, 于广华. Pt插层对Co/FeMn界面的影响. 物理学报, 2009, 58(11): 7977-7982. doi: 10.7498/aps.58.7977
    [13] 冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华. 利用FePt/Au多层膜结构制备垂直磁记录L10-FePt薄膜. 物理学报, 2009, 58(5): 3503-3508. doi: 10.7498/aps.58.3503
    [14] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [15] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置. 物理学报, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [16] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [17] 黄 阀, 李宝河, 杨 涛, 翟中海, 朱逢吾. 多层膜[Co85Cr15/Pt]20的磁性、垂直磁记录特性和微结构的关系. 物理学报, 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [18] 王艾玲, 刘江涛, 周云松, 姜宏伟, 郑 鹉. 各向异性场对三明治膜巨磁阻抗效应的影响. 物理学报, 2004, 53(3): 905-910. doi: 10.7498/aps.53.905
    [19] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性. 物理学报, 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [20] 陈慧余, 罗有泉. Ni-FeCr多层膜的磁各向异性和自旋波谱. 物理学报, 1991, 40(8): 1364-1370. doi: 10.7498/aps.40.1364
计量
  • 文章访问数:  3003
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-09-13
  • 刊出日期:  2016-12-05

磁性多层膜CoFeB/Ni的垂直磁各向异性研究

  • 1. 北京工商大学理学院, 北京 102488;
  • 2. 北京科技大学材料科学与工程学院, 北京 100083
  • 通信作者: 李宝河, libh@btbu.edu.cn
    基金项目: 国家自然科学基金(批准号:11174020)和北京工商大学科研启动基金(批准号:QNJJ2016-18)资助的课题.

摘要: 应用磁控溅射法在玻璃基片上制备了以Pt为底层的CoFeB/Ni多层膜结构样品,通过测试样品的反常霍尔效应研究多层膜的垂直磁各向异性(perpendicular magnetic anisotropy,PMA),对影响多层膜垂直磁各向异性的各因素进行了调制.实验结果表明,多层膜的底层厚度、周期层中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要影响.通过对样品各参数的逐步调制,最终获得了具有良好PMA的CoFeB/Ni多层膜最佳样品Pt(4)/[CoFeB(0.4)/Ni(0.3)]3/Pt(1.0).经测试计算,该样品的各向异性常数Keff为2.2106 erg/cm3(1 erg/cm3=10-1J/m3),具有良好的PMA性能,样品总厚度为7.1 nm,完全满足制备垂直磁结构材料的厚度要求,可进一步研究其在器件中的集成与应用.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回