搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶Ta3FeS6薄膜中巨大的矫顽场

刘晓伟 熊俊林 王利铮 梁世军 程斌 缪峰

引用本文:
Citation:

单晶Ta3FeS6薄膜中巨大的矫顽场

刘晓伟, 熊俊林, 王利铮, 梁世军, 程斌, 缪峰

Giant coercivity in single crystal Ta3FeS6 film

Liu Xiao-Wei, Xiong Jun-Lin, Wang Li-Zheng, Liang Shi-Jun, Cheng Bin, Miao Feng
PDF
HTML
导出引用
  • 范德瓦耳斯层状铁磁材料不但为基础磁学的前沿研究提供了重要的平台, 同时在下一代自旋电子器件中展示了广阔的应用前景. 本文利用化学气相传输方法生长了高质量的、具有本征铁磁性的Ta3FeS6块材单晶. 通过机械剥离法得到厚度19—100 nm的Ta3FeS6薄层样品, 并发现相应的居里温度在176—133 K之间. 低温反常霍尔测量表明Ta3FeS6样品具有面外的铁磁性, 其矫顽场在1.5 K可达到7.6 T, 这是迄今为止在范德瓦耳斯铁磁薄膜材料中报道的最大数值. 此外, 在变温过程中, 还观察到磁滞回线极性的翻转. 相比于通常的范德瓦耳斯磁性材料, Ta3FeS6具有空气稳定性和极大的矫顽场, 这为探索稳定的、可小型化的范德瓦耳斯自旋电子器件研究开辟了全新的平台.
    Van der Waals (vdW) layered ferromagnetic materials provide a unique platform for fundamental spintronic research, and have broad application prospects in the next-generation spintronic devices. In this study, we synthesize high-quality single crystals of vdW intrinsic ferromagnet Ta3FeS6 by the chemical vapor transport method. We obtain thin layer samples of Ta3FeS6 with thickness values ranging from 19 to 100 nm by the mechanical exfoliation method, and find that their corresponding Curie temperatures are between 176 and 133 K. The anomalous Hall measurement shows that the Ta3FeS6 has out-of-plane ferromagnetism with the coercivity reaching 7.6 T at 1.5 K, which is the largest value in those of the layered vdW ferromagnetic materials reported so far. In addition, we observe that the reversal polarity of the hysteresis loop changes sign with temperature increasing. Our work provides an opportunity to construct stable and miniaturized spintronic devices and present a new platform for studying spintronics based on van der Waals magnetic materials.
      通信作者: 程斌, bincheng@njust.edu.cn ; 缪峰, miao@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074176, 62122036, 62034004, 61921005, 61974176)、中国科学院战略性先导科技专项(批准号: XDB44000000)和中央高校基本科研业务费(批准号: 020414380179)资助的课题.
      Corresponding author: Cheng Bin, bincheng@njust.edu.cn ; Miao Feng, miao@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074176, 62122036, 62034004, 61921005, 61974176), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 020414380179).
    [1]

    Kang W, Zhang Y, Wang Z H, Klein J O, Chappert C, Ravelosona D, Wang G F, Zhang Y G, Zhao W S 2015 ACM J. Emerging Technol. Comput. Syst. (JETC) 12(SI) 16

    [2]

    Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 1

    [3]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [4]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S 2017 Mater. Today 20 530Google Scholar

    [5]

    Zhao W S, Chappert C, Javerliac V, Noziere J P 2009 IEEE Trans. Magn. 45 3784Google Scholar

    [6]

    Li Z, Zhang S F 2004 Phys. Rev. B 69 134416Google Scholar

    [7]

    Han X F, Wang X, Wan C H, Yu G Q, Lü X R 2021 Appl. Phys. Lett. 118 120502Google Scholar

    [8]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [9]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [10]

    Han W, Maekawa S, Xie X C 2020 Nat. Mater. 19 139Google Scholar

    [11]

    Chen G Y, Qi S M, Liu J Q, Chen D, Wang J J, Yan S L, Zhang Y, Cao S M, Lu M, Tian S B, Chen K Y, Yu P, Liu Z, Xie X C, Xiao J, Shindou R, Chen J H 2021 Nat. Commun. 12 1Google Scholar

    [12]

    Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar

    [13]

    Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H, Woo S 2020 Nat. Electron. 3 148Google Scholar

    [14]

    Yu G Q, Upadhyaya P, Shao Q M, Wu H L, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar

    [15]

    Huang B, Clark G, Navarro Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [16]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [17]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [18]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [19]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [20]

    Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [21]

    Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [22]

    Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C H, Han X F, Shao Q M, Taniguchi T, Watanabe K, Zang J D, Mao Z Q, Zhang X X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [23]

    Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X X, Han Z, Zhang Z D, Zhang G Y, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [24]

    Wang Z, Gutiérrez Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 1Google Scholar

    [25]

    Chun K C, Zhao H, Harms J D, Kim T H, Wang J P, Kim C H A 2012 IEEE J. Solid-State Circuits 48 598

    [26]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [27]

    Wang Y J, Wang L Z, Liu X W, Wu H, Wang P F, Yan D Y, Cheng B, Shi Y G, Watanabe K, Taniguchi T, Liang S J, Miao F 2019 Nano Lett. 19 3969Google Scholar

    [28]

    Fan S, Manuel I, Al-Wahish A, O'Neal K R, Smith K A, Won C J, Kim J W, Cheong S W, Haraldsen J T, Musfeldt J L 2017 Phys. Rev. B 96 205119Google Scholar

    [29]

    Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sc. 7 2001722Google Scholar

    [30]

    Palacios J J, Fernández Rossier J, Brey L 2008 Phys. Rev. B 77 195428Google Scholar

    [31]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408Google Scholar

    [32]

    Zhang Y J, Hu J F, Cao E S, Sun L, Qin H W 2012 J. Magn. Magn. Mater. 324 1770Google Scholar

    [33]

    Liu Y Y, Wu J J, Hackenberg K P, Zhang J, Wang Y M, Yang Y C, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood Brandon C, Yakobson B I 2017 Nat. Energy 2 1

    [34]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [35]

    Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z Q, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar

    [36]

    Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818Google Scholar

    [37]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [38]

    Yue D, Jin X F 2017 J. Phys. Soc. Jpn. 86 011006Google Scholar

    [39]

    Kovalev A A, Tserkovnyak Y, Výborný K, Sinova J 2009 Phys. Rev. B 79 195129Google Scholar

    [40]

    Li H X, Wang L J, Chen J S, Yu T, Zhou L, Qiu Y, He H T, Ye F, Sou I K, Wang G 2019 ACS Appl. Nano Mater. 2 6809Google Scholar

    [41]

    Keskin V, Aktaş B, Schmalhorst J, Reiss G, Zhang H, Weischenberg J, Mokrousov Y 2013 Appl. Phys. Lett. 102 022416Google Scholar

    [42]

    Winer G, Segal A, Karpovski M, Shelukhin V, Gerber A 2015 J. Appl. Phys. 118 173901Google Scholar

    [43]

    Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647Google Scholar

    [44]

    Dijkstra J, Weitering H H, Vanbruggen C F, Haas C, Degroot R A 1989 J. Phys. Condens. Matter 1 9141Google Scholar

    [45]

    Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J, Xue Q K 2018 Nano Res. 11 3116Google Scholar

    [46]

    Liu X W, Wang Y J, Guo Q Q, Liang S J, Xu T, Liu B, Qiao J B, Lai S Q, Zeng J W, Hao S, Gu C Y, Cao T J, Wang C Y, Wang Y, Pan C, Su G X, Nie Y F, Wan X G, Sun L T, Wang Z L, He L, Cheng B, Miao F 2021 Phys. Rev. Mater. 5 L041001Google Scholar

    [47]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [48]

    Ge J, Luo T C, Lin Z Z, Shi J P, Liu Y Z, Wang P Y, Zhang Y F, Duan W H, Wang J 2021 Adv. Mater. 33 2005465Google Scholar

    [49]

    Guguchia Z, Kerelsky A, Edelberg D, Banerjee S, Rohr F v, Scullion D, Augustin M, Scully M, Rhodes D A, Shermadini Z, Luetkens H, Shengelaya A, Baines C, Morenzoni E, Amato A, Hone J C, Khasanov R, Billinge S J L, Santos E, Pasupathy A N, Uemura Y J 2018 Sci. Adv. 4 eaat3672Google Scholar

    [50]

    Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693Google Scholar

    [51]

    Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [52]

    Arnold F, Stan R-M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009

    [53]

    Cai L, He J F, Liu Q H, Yao T, Chen L, Yan W S, Hu F C, Jiang Y, Zhao Y D, Hu T D, Sun Z H, Wei S Q 2015 J. Am. Chem. Soc. 137 2622Google Scholar

    [54]

    Horibe Y, Yang J J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368Google Scholar

    [55]

    Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 Phys. Rev. B 91 054426Google Scholar

    [56]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [57]

    Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 Phys. Rev. B 99 041402Google Scholar

    [58]

    Hwang I, Coak M J, Lee N, Ko D S, Oh Y, Jeon I, Son S, Zhang K X, Kim J, Park J G 2019 J. Phys. Condens. Matter 31 50LT01Google Scholar

    [59]

    Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phy. Lett. 115 232403Google Scholar

    [60]

    Pedersen K S, Perlepe P, Aubrey M L, Woodruff D N, Reyes-Lillo S E, Reinholdt A, Voigt L, Li Z S, Borup K, Rouzières M, Samohvalov D, Wilhelm F, Rogalev A, Neaton J B, Long J R, Clérac R 2018 Nat. Chem. 10 1056Google Scholar

  • 图 1  (a) Ta3FeS6的晶体结构. 左侧为1层Ta3FeS6的原子结构俯视图, 右侧为Ta3FeS6晶体的三维结构示意图, 其中铁原子嵌在H-TaS2的层间; (b) Ta3FeS6单晶的能量色散X射线光谱, 插图为通过CVT方法生长的Ta3FeS6单晶的光学照片; (c) Ta3FeS6单晶的拉曼光谱; (d)原子力显微镜对Ta3FeS6器件1的样品厚度测量结果

    Fig. 1.  (a) Crystal structure of Ta3FeS6. The left panel is the top view of the atomic structure of single layer of Ta3FeS6, and the right panel is the three-dimensional structure diagram of Ta3FeS6 crystal, in which iron atoms are embedded between the layers of H-TaS2. (b) Energy dispersive X-ray spectrum of Ta3FeS6 single crystal. The inset is the optical photo of Ta3FeS6 single crystal grown by chemical vapor transport method. (c) Raman spectrum of Ta3FeS6. (d) Measurement result of sample thickness of Ta3FeS6 device 1 by atomic force microscope.

    图 2  (a) 器件结构和外部测量电路的示意图; (b) 器件1的纵向电阻Rxx的降温曲线. 插图为器件1的光学照片; (c) 器件2的纵向电阻Rxx的降温曲线. 插图为器件2 的光学照片

    Fig. 2.  (a) Diagram of the device and external circuit. The cooling curve of longitudinal resistance Rxx of the device 1 (b) and device 2 (c). The inset is the optical photograph of the device 1 (b) and device 2 (c).

    图 3  (a) 器件1温度依赖的磁阻和反常霍尔电阻. 红线代表正向扫描, 蓝线代表反向扫描; (b) 器件1和器件2矫顽场随温度的变化关系. 插图为器件1和器件2温度依赖的矫顽场在高温区的局部放大图; (c) 器件1载流子浓度随温度的变化关系; (d) 已报道的二维铁磁材料(VSe2[56], VI3[57], Fe3GeTe2 单层[17], Fe3GeTe2 12 nm[18], Fe2Co0.7GeTe2[58], Cr2Ge2Te6 7 nm[59], Cr3Cl2(pyrazine)2[60], Ta3FeS6 纳米片[29], Fe0.28TaS2 80—180 nm[55])不同温度下矫顽场的统计结果

    Fig. 3.  (a) Temperature dependent magneto-resistance and anomalous Hall resistance of device 1. The red line represents forward scanning and the blue line represents reverse scanning. (b) The relationship between coercivity and temperature for device 1 and device 2. The inset shows a local enlarged view of the temperature-dependent coercive fields of device 1 and device 2 in the high temperature zone. (c) The carrier concentration as a function of temperature in device 1. (d) The statistical results of coercivity of the reported two-dimensional ferromagnetic materials (VSe2[56], VI3[57], Fe3GeTe2 monolayer[17], Fe3GeTe2 12 nm[18], Fe2Co0.7GeTe2[58], Cr2Ge2Te6 7 nm[59], Cr3Cl2(pyrazine)2[60], Ta3FeS6 nanosheet[29], Fe0.28TaS2 80–180 nm[55]) at different temperatures.

  • [1]

    Kang W, Zhang Y, Wang Z H, Klein J O, Chappert C, Ravelosona D, Wang G F, Zhang Y G, Zhao W S 2015 ACM J. Emerging Technol. Comput. Syst. (JETC) 12(SI) 16

    [2]

    Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 1

    [3]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [4]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S 2017 Mater. Today 20 530Google Scholar

    [5]

    Zhao W S, Chappert C, Javerliac V, Noziere J P 2009 IEEE Trans. Magn. 45 3784Google Scholar

    [6]

    Li Z, Zhang S F 2004 Phys. Rev. B 69 134416Google Scholar

    [7]

    Han X F, Wang X, Wan C H, Yu G Q, Lü X R 2021 Appl. Phys. Lett. 118 120502Google Scholar

    [8]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [9]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [10]

    Han W, Maekawa S, Xie X C 2020 Nat. Mater. 19 139Google Scholar

    [11]

    Chen G Y, Qi S M, Liu J Q, Chen D, Wang J J, Yan S L, Zhang Y, Cao S M, Lu M, Tian S B, Chen K Y, Yu P, Liu Z, Xie X C, Xiao J, Shindou R, Chen J H 2021 Nat. Commun. 12 1Google Scholar

    [12]

    Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar

    [13]

    Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H, Woo S 2020 Nat. Electron. 3 148Google Scholar

    [14]

    Yu G Q, Upadhyaya P, Shao Q M, Wu H L, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar

    [15]

    Huang B, Clark G, Navarro Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [16]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [17]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [18]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [19]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [20]

    Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [21]

    Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [22]

    Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C H, Han X F, Shao Q M, Taniguchi T, Watanabe K, Zang J D, Mao Z Q, Zhang X X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [23]

    Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X X, Han Z, Zhang Z D, Zhang G Y, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [24]

    Wang Z, Gutiérrez Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 1Google Scholar

    [25]

    Chun K C, Zhao H, Harms J D, Kim T H, Wang J P, Kim C H A 2012 IEEE J. Solid-State Circuits 48 598

    [26]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [27]

    Wang Y J, Wang L Z, Liu X W, Wu H, Wang P F, Yan D Y, Cheng B, Shi Y G, Watanabe K, Taniguchi T, Liang S J, Miao F 2019 Nano Lett. 19 3969Google Scholar

    [28]

    Fan S, Manuel I, Al-Wahish A, O'Neal K R, Smith K A, Won C J, Kim J W, Cheong S W, Haraldsen J T, Musfeldt J L 2017 Phys. Rev. B 96 205119Google Scholar

    [29]

    Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sc. 7 2001722Google Scholar

    [30]

    Palacios J J, Fernández Rossier J, Brey L 2008 Phys. Rev. B 77 195428Google Scholar

    [31]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408Google Scholar

    [32]

    Zhang Y J, Hu J F, Cao E S, Sun L, Qin H W 2012 J. Magn. Magn. Mater. 324 1770Google Scholar

    [33]

    Liu Y Y, Wu J J, Hackenberg K P, Zhang J, Wang Y M, Yang Y C, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood Brandon C, Yakobson B I 2017 Nat. Energy 2 1

    [34]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [35]

    Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z Q, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar

    [36]

    Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818Google Scholar

    [37]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [38]

    Yue D, Jin X F 2017 J. Phys. Soc. Jpn. 86 011006Google Scholar

    [39]

    Kovalev A A, Tserkovnyak Y, Výborný K, Sinova J 2009 Phys. Rev. B 79 195129Google Scholar

    [40]

    Li H X, Wang L J, Chen J S, Yu T, Zhou L, Qiu Y, He H T, Ye F, Sou I K, Wang G 2019 ACS Appl. Nano Mater. 2 6809Google Scholar

    [41]

    Keskin V, Aktaş B, Schmalhorst J, Reiss G, Zhang H, Weischenberg J, Mokrousov Y 2013 Appl. Phys. Lett. 102 022416Google Scholar

    [42]

    Winer G, Segal A, Karpovski M, Shelukhin V, Gerber A 2015 J. Appl. Phys. 118 173901Google Scholar

    [43]

    Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647Google Scholar

    [44]

    Dijkstra J, Weitering H H, Vanbruggen C F, Haas C, Degroot R A 1989 J. Phys. Condens. Matter 1 9141Google Scholar

    [45]

    Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J, Xue Q K 2018 Nano Res. 11 3116Google Scholar

    [46]

    Liu X W, Wang Y J, Guo Q Q, Liang S J, Xu T, Liu B, Qiao J B, Lai S Q, Zeng J W, Hao S, Gu C Y, Cao T J, Wang C Y, Wang Y, Pan C, Su G X, Nie Y F, Wan X G, Sun L T, Wang Z L, He L, Cheng B, Miao F 2021 Phys. Rev. Mater. 5 L041001Google Scholar

    [47]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [48]

    Ge J, Luo T C, Lin Z Z, Shi J P, Liu Y Z, Wang P Y, Zhang Y F, Duan W H, Wang J 2021 Adv. Mater. 33 2005465Google Scholar

    [49]

    Guguchia Z, Kerelsky A, Edelberg D, Banerjee S, Rohr F v, Scullion D, Augustin M, Scully M, Rhodes D A, Shermadini Z, Luetkens H, Shengelaya A, Baines C, Morenzoni E, Amato A, Hone J C, Khasanov R, Billinge S J L, Santos E, Pasupathy A N, Uemura Y J 2018 Sci. Adv. 4 eaat3672Google Scholar

    [50]

    Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693Google Scholar

    [51]

    Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [52]

    Arnold F, Stan R-M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009

    [53]

    Cai L, He J F, Liu Q H, Yao T, Chen L, Yan W S, Hu F C, Jiang Y, Zhao Y D, Hu T D, Sun Z H, Wei S Q 2015 J. Am. Chem. Soc. 137 2622Google Scholar

    [54]

    Horibe Y, Yang J J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368Google Scholar

    [55]

    Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 Phys. Rev. B 91 054426Google Scholar

    [56]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [57]

    Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 Phys. Rev. B 99 041402Google Scholar

    [58]

    Hwang I, Coak M J, Lee N, Ko D S, Oh Y, Jeon I, Son S, Zhang K X, Kim J, Park J G 2019 J. Phys. Condens. Matter 31 50LT01Google Scholar

    [59]

    Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phy. Lett. 115 232403Google Scholar

    [60]

    Pedersen K S, Perlepe P, Aubrey M L, Woodruff D N, Reyes-Lillo S E, Reinholdt A, Voigt L, Li Z S, Borup K, Rouzières M, Samohvalov D, Wilhelm F, Rogalev A, Neaton J B, Long J R, Clérac R 2018 Nat. Chem. 10 1056Google Scholar

  • [1] 马泽成, 刘增霖, 程斌, 梁世军, 缪峰. 范德瓦耳斯材料的原位应变工程与应用. 物理学报, 2024, 73(11): 110701. doi: 10.7498/aps.73.20240353
    [2] 熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙. 二维范德瓦耳斯异质结Cs3X2I9/InSe (X = Bi, Sb)的光电性能. 物理学报, 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [3] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [4] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [5] 祝鑫强, 王剑, 朱璨, 罗丰, 陈树权, 徐佳辉, 徐峰, 王嘉赋, 张艳, 孙志刚. Co3Sn2S2单晶的磁性和电-热输运性能. 物理学报, 2023, 72(17): 177102. doi: 10.7498/aps.72.20230621
    [6] 扈仕林, 刘均华, 邓志雄, 肖文, 杨瞻, 陈凯, 廖昭亮. Pt/La0.67Sr0.33MnO3异质结中的反常霍尔效应. 物理学报, 2023, 72(9): 097503. doi: 10.7498/aps.72.20221852
    [7] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控. 物理学报, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [8] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展. 物理学报, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [9] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [10] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [11] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运. 物理学报, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [12] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱. 物理学报, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [13] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究. 物理学报, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [14] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 物理学报, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [15] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [16] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [17] 朱金荣, 香妹, 胡经国. 铁磁/反铁磁双层膜系统中的磁畴动力学行为. 物理学报, 2012, 61(18): 187504. doi: 10.7498/aps.61.187504
    [18] 贾宝申, 赵业权, 张学锋, 申 岩, 何焰蓝. 近化学计量比钽酸锂畴反转特性研究. 物理学报, 2008, 57(9): 5670-5674. doi: 10.7498/aps.57.5670
    [19] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷. 物理学报, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [20] 赵明磊, 王春雷, 钟维烈, 张沛霖, 王矜奉. 铋层化合物Sr1+xBi4-xTi4-xTaxO15(x=0—1)陶瓷的介电和铁电特性. 物理学报, 2002, 51(2): 420-423. doi: 10.7498/aps.51.420
计量
  • 文章访问数:  5466
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-04-28
  • 上网日期:  2022-06-23
  • 刊出日期:  2022-06-20

/

返回文章
返回