-
范德瓦耳斯层状铁磁材料不但为基础磁学的前沿研究提供了重要的平台, 同时在下一代自旋电子器件中展示了广阔的应用前景. 本文利用化学气相传输方法生长了高质量的、具有本征铁磁性的Ta3FeS6块材单晶. 通过机械剥离法得到厚度19—100 nm的Ta3FeS6薄层样品, 并发现相应的居里温度在176—133 K之间. 低温反常霍尔测量表明Ta3FeS6样品具有面外的铁磁性, 其矫顽场在1.5 K可达到7.6 T, 这是迄今为止在范德瓦耳斯铁磁薄膜材料中报道的最大数值. 此外, 在变温过程中, 还观察到磁滞回线极性的翻转. 相比于通常的范德瓦耳斯磁性材料, Ta3FeS6具有空气稳定性和极大的矫顽场, 这为探索稳定的、可小型化的范德瓦耳斯自旋电子器件研究开辟了全新的平台.Van der Waals (vdW) layered ferromagnetic materials provide a unique platform for fundamental spintronic research, and have broad application prospects in the next-generation spintronic devices. In this study, we synthesize high-quality single crystals of vdW intrinsic ferromagnet Ta3FeS6 by the chemical vapor transport method. We obtain thin layer samples of Ta3FeS6 with thickness values ranging from 19 to 100 nm by the mechanical exfoliation method, and find that their corresponding Curie temperatures are between 176 and 133 K. The anomalous Hall measurement shows that the Ta3FeS6 has out-of-plane ferromagnetism with the coercivity reaching 7.6 T at 1.5 K, which is the largest value in those of the layered vdW ferromagnetic materials reported so far. In addition, we observe that the reversal polarity of the hysteresis loop changes sign with temperature increasing. Our work provides an opportunity to construct stable and miniaturized spintronic devices and present a new platform for studying spintronics based on van der Waals magnetic materials.
-
Keywords:
- Ta3FeS6 /
- anomalous Hall effect /
- van der Waals magnetic material /
- coercive field
[1] Kang W, Zhang Y, Wang Z H, Klein J O, Chappert C, Ravelosona D, Wang G F, Zhang Y G, Zhao W S 2015 ACM J. Emerging Technol. Comput. Syst. (JETC) 12(SI) 16
[2] Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 1
[3] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar
[4] Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S 2017 Mater. Today 20 530Google Scholar
[5] Zhao W S, Chappert C, Javerliac V, Noziere J P 2009 IEEE Trans. Magn. 45 3784Google Scholar
[6] Li Z, Zhang S F 2004 Phys. Rev. B 69 134416Google Scholar
[7] Han X F, Wang X, Wan C H, Yu G Q, Lü X R 2021 Appl. Phys. Lett. 118 120502Google Scholar
[8] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar
[9] Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar
[10] Han W, Maekawa S, Xie X C 2020 Nat. Mater. 19 139Google Scholar
[11] Chen G Y, Qi S M, Liu J Q, Chen D, Wang J J, Yan S L, Zhang Y, Cao S M, Lu M, Tian S B, Chen K Y, Yu P, Liu Z, Xie X C, Xiao J, Shindou R, Chen J H 2021 Nat. Commun. 12 1Google Scholar
[12] Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar
[13] Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H, Woo S 2020 Nat. Electron. 3 148Google Scholar
[14] Yu G Q, Upadhyaya P, Shao Q M, Wu H L, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar
[15] Huang B, Clark G, Navarro Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo Herrero P, Xu X D 2017 Nature 546 270Google Scholar
[16] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar
[17] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[18] Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar
[19] Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar
[20] Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar
[21] Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400Google Scholar
[22] Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C H, Han X F, Shao Q M, Taniguchi T, Watanabe K, Zang J D, Mao Z Q, Zhang X X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar
[23] Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X X, Han Z, Zhang Z D, Zhang G Y, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar
[24] Wang Z, Gutiérrez Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 1Google Scholar
[25] Chun K C, Zhao H, Harms J D, Kim T H, Wang J P, Kim C H A 2012 IEEE J. Solid-State Circuits 48 598
[26] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar
[27] Wang Y J, Wang L Z, Liu X W, Wu H, Wang P F, Yan D Y, Cheng B, Shi Y G, Watanabe K, Taniguchi T, Liang S J, Miao F 2019 Nano Lett. 19 3969Google Scholar
[28] Fan S, Manuel I, Al-Wahish A, O'Neal K R, Smith K A, Won C J, Kim J W, Cheong S W, Haraldsen J T, Musfeldt J L 2017 Phys. Rev. B 96 205119Google Scholar
[29] Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sc. 7 2001722Google Scholar
[30] Palacios J J, Fernández Rossier J, Brey L 2008 Phys. Rev. B 77 195428Google Scholar
[31] Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408Google Scholar
[32] Zhang Y J, Hu J F, Cao E S, Sun L, Qin H W 2012 J. Magn. Magn. Mater. 324 1770Google Scholar
[33] Liu Y Y, Wu J J, Hackenberg K P, Zhang J, Wang Y M, Yang Y C, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood Brandon C, Yakobson B I 2017 Nat. Energy 2 1
[34] Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar
[35] Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z Q, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar
[36] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818Google Scholar
[37] Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar
[38] Yue D, Jin X F 2017 J. Phys. Soc. Jpn. 86 011006Google Scholar
[39] Kovalev A A, Tserkovnyak Y, Výborný K, Sinova J 2009 Phys. Rev. B 79 195129Google Scholar
[40] Li H X, Wang L J, Chen J S, Yu T, Zhou L, Qiu Y, He H T, Ye F, Sou I K, Wang G 2019 ACS Appl. Nano Mater. 2 6809Google Scholar
[41] Keskin V, Aktaş B, Schmalhorst J, Reiss G, Zhang H, Weischenberg J, Mokrousov Y 2013 Appl. Phys. Lett. 102 022416Google Scholar
[42] Winer G, Segal A, Karpovski M, Shelukhin V, Gerber A 2015 J. Appl. Phys. 118 173901Google Scholar
[43] Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647Google Scholar
[44] Dijkstra J, Weitering H H, Vanbruggen C F, Haas C, Degroot R A 1989 J. Phys. Condens. Matter 1 9141Google Scholar
[45] Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J, Xue Q K 2018 Nano Res. 11 3116Google Scholar
[46] Liu X W, Wang Y J, Guo Q Q, Liang S J, Xu T, Liu B, Qiao J B, Lai S Q, Zeng J W, Hao S, Gu C Y, Cao T J, Wang C Y, Wang Y, Pan C, Su G X, Nie Y F, Wan X G, Sun L T, Wang Z L, He L, Cheng B, Miao F 2021 Phys. Rev. Mater. 5 L041001Google Scholar
[47] Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar
[48] Ge J, Luo T C, Lin Z Z, Shi J P, Liu Y Z, Wang P Y, Zhang Y F, Duan W H, Wang J 2021 Adv. Mater. 33 2005465Google Scholar
[49] Guguchia Z, Kerelsky A, Edelberg D, Banerjee S, Rohr F v, Scullion D, Augustin M, Scully M, Rhodes D A, Shermadini Z, Luetkens H, Shengelaya A, Baines C, Morenzoni E, Amato A, Hone J C, Khasanov R, Billinge S J L, Santos E, Pasupathy A N, Uemura Y J 2018 Sci. Adv. 4 eaat3672Google Scholar
[50] Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693Google Scholar
[51] Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar
[52] Arnold F, Stan R-M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009
[53] Cai L, He J F, Liu Q H, Yao T, Chen L, Yan W S, Hu F C, Jiang Y, Zhao Y D, Hu T D, Sun Z H, Wei S Q 2015 J. Am. Chem. Soc. 137 2622Google Scholar
[54] Horibe Y, Yang J J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368Google Scholar
[55] Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 Phys. Rev. B 91 054426Google Scholar
[56] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar
[57] Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 Phys. Rev. B 99 041402Google Scholar
[58] Hwang I, Coak M J, Lee N, Ko D S, Oh Y, Jeon I, Son S, Zhang K X, Kim J, Park J G 2019 J. Phys. Condens. Matter 31 50LT01Google Scholar
[59] Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phy. Lett. 115 232403Google Scholar
[60] Pedersen K S, Perlepe P, Aubrey M L, Woodruff D N, Reyes-Lillo S E, Reinholdt A, Voigt L, Li Z S, Borup K, Rouzières M, Samohvalov D, Wilhelm F, Rogalev A, Neaton J B, Long J R, Clérac R 2018 Nat. Chem. 10 1056Google Scholar
-
图 1 (a) Ta3FeS6的晶体结构. 左侧为1层Ta3FeS6的原子结构俯视图, 右侧为Ta3FeS6晶体的三维结构示意图, 其中铁原子嵌在H-TaS2的层间; (b) Ta3FeS6单晶的能量色散X射线光谱, 插图为通过CVT方法生长的Ta3FeS6单晶的光学照片; (c) Ta3FeS6单晶的拉曼光谱; (d)原子力显微镜对Ta3FeS6器件1的样品厚度测量结果
Fig. 1. (a) Crystal structure of Ta3FeS6. The left panel is the top view of the atomic structure of single layer of Ta3FeS6, and the right panel is the three-dimensional structure diagram of Ta3FeS6 crystal, in which iron atoms are embedded between the layers of H-TaS2. (b) Energy dispersive X-ray spectrum of Ta3FeS6 single crystal. The inset is the optical photo of Ta3FeS6 single crystal grown by chemical vapor transport method. (c) Raman spectrum of Ta3FeS6. (d) Measurement result of sample thickness of Ta3FeS6 device 1 by atomic force microscope.
图 2 (a) 器件结构和外部测量电路的示意图; (b) 器件1的纵向电阻Rxx的降温曲线. 插图为器件1的光学照片; (c) 器件2的纵向电阻Rxx的降温曲线. 插图为器件2 的光学照片
Fig. 2. (a) Diagram of the device and external circuit. The cooling curve of longitudinal resistance Rxx of the device 1 (b) and device 2 (c). The inset is the optical photograph of the device 1 (b) and device 2 (c).
图 3 (a) 器件1温度依赖的磁阻和反常霍尔电阻. 红线代表正向扫描, 蓝线代表反向扫描; (b) 器件1和器件2矫顽场随温度的变化关系. 插图为器件1和器件2温度依赖的矫顽场在高温区的局部放大图; (c) 器件1载流子浓度随温度的变化关系; (d) 已报道的二维铁磁材料(VSe2[56], VI3[57], Fe3GeTe2 单层[17], Fe3GeTe2 12 nm[18], Fe2Co0.7GeTe2[58], Cr2Ge2Te6 7 nm[59], Cr3Cl2(pyrazine)2[60], Ta3FeS6 纳米片[29], Fe0.28TaS2 80—180 nm[55])不同温度下矫顽场的统计结果
Fig. 3. (a) Temperature dependent magneto-resistance and anomalous Hall resistance of device 1. The red line represents forward scanning and the blue line represents reverse scanning. (b) The relationship between coercivity and temperature for device 1 and device 2. The inset shows a local enlarged view of the temperature-dependent coercive fields of device 1 and device 2 in the high temperature zone. (c) The carrier concentration as a function of temperature in device 1. (d) The statistical results of coercivity of the reported two-dimensional ferromagnetic materials (VSe2[56], VI3[57], Fe3GeTe2 monolayer[17], Fe3GeTe2 12 nm[18], Fe2Co0.7GeTe2[58], Cr2Ge2Te6 7 nm[59], Cr3Cl2(pyrazine)2[60], Ta3FeS6 nanosheet[29], Fe0.28TaS2 80–180 nm[55]) at different temperatures.
-
[1] Kang W, Zhang Y, Wang Z H, Klein J O, Chappert C, Ravelosona D, Wang G F, Zhang Y G, Zhao W S 2015 ACM J. Emerging Technol. Comput. Syst. (JETC) 12(SI) 16
[2] Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 1
[3] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar
[4] Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S 2017 Mater. Today 20 530Google Scholar
[5] Zhao W S, Chappert C, Javerliac V, Noziere J P 2009 IEEE Trans. Magn. 45 3784Google Scholar
[6] Li Z, Zhang S F 2004 Phys. Rev. B 69 134416Google Scholar
[7] Han X F, Wang X, Wan C H, Yu G Q, Lü X R 2021 Appl. Phys. Lett. 118 120502Google Scholar
[8] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar
[9] Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar
[10] Han W, Maekawa S, Xie X C 2020 Nat. Mater. 19 139Google Scholar
[11] Chen G Y, Qi S M, Liu J Q, Chen D, Wang J J, Yan S L, Zhang Y, Cao S M, Lu M, Tian S B, Chen K Y, Yu P, Liu Z, Xie X C, Xiao J, Shindou R, Chen J H 2021 Nat. Commun. 12 1Google Scholar
[12] Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar
[13] Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H, Woo S 2020 Nat. Electron. 3 148Google Scholar
[14] Yu G Q, Upadhyaya P, Shao Q M, Wu H L, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar
[15] Huang B, Clark G, Navarro Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo Herrero P, Xu X D 2017 Nature 546 270Google Scholar
[16] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar
[17] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[18] Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar
[19] Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar
[20] Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar
[21] Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400Google Scholar
[22] Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C H, Han X F, Shao Q M, Taniguchi T, Watanabe K, Zang J D, Mao Z Q, Zhang X X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar
[23] Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X X, Han Z, Zhang Z D, Zhang G Y, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar
[24] Wang Z, Gutiérrez Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 1Google Scholar
[25] Chun K C, Zhao H, Harms J D, Kim T H, Wang J P, Kim C H A 2012 IEEE J. Solid-State Circuits 48 598
[26] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar
[27] Wang Y J, Wang L Z, Liu X W, Wu H, Wang P F, Yan D Y, Cheng B, Shi Y G, Watanabe K, Taniguchi T, Liang S J, Miao F 2019 Nano Lett. 19 3969Google Scholar
[28] Fan S, Manuel I, Al-Wahish A, O'Neal K R, Smith K A, Won C J, Kim J W, Cheong S W, Haraldsen J T, Musfeldt J L 2017 Phys. Rev. B 96 205119Google Scholar
[29] Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sc. 7 2001722Google Scholar
[30] Palacios J J, Fernández Rossier J, Brey L 2008 Phys. Rev. B 77 195428Google Scholar
[31] Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408Google Scholar
[32] Zhang Y J, Hu J F, Cao E S, Sun L, Qin H W 2012 J. Magn. Magn. Mater. 324 1770Google Scholar
[33] Liu Y Y, Wu J J, Hackenberg K P, Zhang J, Wang Y M, Yang Y C, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood Brandon C, Yakobson B I 2017 Nat. Energy 2 1
[34] Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar
[35] Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z Q, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar
[36] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818Google Scholar
[37] Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar
[38] Yue D, Jin X F 2017 J. Phys. Soc. Jpn. 86 011006Google Scholar
[39] Kovalev A A, Tserkovnyak Y, Výborný K, Sinova J 2009 Phys. Rev. B 79 195129Google Scholar
[40] Li H X, Wang L J, Chen J S, Yu T, Zhou L, Qiu Y, He H T, Ye F, Sou I K, Wang G 2019 ACS Appl. Nano Mater. 2 6809Google Scholar
[41] Keskin V, Aktaş B, Schmalhorst J, Reiss G, Zhang H, Weischenberg J, Mokrousov Y 2013 Appl. Phys. Lett. 102 022416Google Scholar
[42] Winer G, Segal A, Karpovski M, Shelukhin V, Gerber A 2015 J. Appl. Phys. 118 173901Google Scholar
[43] Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647Google Scholar
[44] Dijkstra J, Weitering H H, Vanbruggen C F, Haas C, Degroot R A 1989 J. Phys. Condens. Matter 1 9141Google Scholar
[45] Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J, Xue Q K 2018 Nano Res. 11 3116Google Scholar
[46] Liu X W, Wang Y J, Guo Q Q, Liang S J, Xu T, Liu B, Qiao J B, Lai S Q, Zeng J W, Hao S, Gu C Y, Cao T J, Wang C Y, Wang Y, Pan C, Su G X, Nie Y F, Wan X G, Sun L T, Wang Z L, He L, Cheng B, Miao F 2021 Phys. Rev. Mater. 5 L041001Google Scholar
[47] Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar
[48] Ge J, Luo T C, Lin Z Z, Shi J P, Liu Y Z, Wang P Y, Zhang Y F, Duan W H, Wang J 2021 Adv. Mater. 33 2005465Google Scholar
[49] Guguchia Z, Kerelsky A, Edelberg D, Banerjee S, Rohr F v, Scullion D, Augustin M, Scully M, Rhodes D A, Shermadini Z, Luetkens H, Shengelaya A, Baines C, Morenzoni E, Amato A, Hone J C, Khasanov R, Billinge S J L, Santos E, Pasupathy A N, Uemura Y J 2018 Sci. Adv. 4 eaat3672Google Scholar
[50] Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693Google Scholar
[51] Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar
[52] Arnold F, Stan R-M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009
[53] Cai L, He J F, Liu Q H, Yao T, Chen L, Yan W S, Hu F C, Jiang Y, Zhao Y D, Hu T D, Sun Z H, Wei S Q 2015 J. Am. Chem. Soc. 137 2622Google Scholar
[54] Horibe Y, Yang J J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368Google Scholar
[55] Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 Phys. Rev. B 91 054426Google Scholar
[56] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar
[57] Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 Phys. Rev. B 99 041402Google Scholar
[58] Hwang I, Coak M J, Lee N, Ko D S, Oh Y, Jeon I, Son S, Zhang K X, Kim J, Park J G 2019 J. Phys. Condens. Matter 31 50LT01Google Scholar
[59] Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phy. Lett. 115 232403Google Scholar
[60] Pedersen K S, Perlepe P, Aubrey M L, Woodruff D N, Reyes-Lillo S E, Reinholdt A, Voigt L, Li Z S, Borup K, Rouzières M, Samohvalov D, Wilhelm F, Rogalev A, Neaton J B, Long J R, Clérac R 2018 Nat. Chem. 10 1056Google Scholar
计量
- 文章访问数: 5242
- PDF下载量: 203
- 被引次数: 0