搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co3Sn2S2单晶的磁性和电-热输运性能

祝鑫强 王剑 朱璨 罗丰 陈树权 徐佳辉 徐峰 王嘉赋 张艳 孙志刚

引用本文:
Citation:

Co3Sn2S2单晶的磁性和电-热输运性能

祝鑫强, 王剑, 朱璨, 罗丰, 陈树权, 徐佳辉, 徐峰, 王嘉赋, 张艳, 孙志刚

Magnetic and electrical-thermal transport properties of Co3Sn2S2 single crystal

Zhu Xin-Qiang, Wang Jian, Zhu Can, Luo Feng, Chen Shu-Quan, Xu Jia-Hui, Xu Feng, Wang Jia-Fu, Zhang Yan, Sun Zhi-Gang
PDF
HTML
导出引用
  • Co3Sn2S2是一种磁性外尔半金属, 具有特殊的磁性和电子结构, 其独特的能带结构使其拥有反常霍尔效应、负磁阻效应和反常能斯特效应等多种物理性质. 本文采用自熔剂法合成了高质量的Co3Sn2S2单晶, 并研究了Co3Sn2S2低温下的电输运行为(磁阻效应与霍尔效应等)和热输运行为(塞贝克效应). 热磁曲线表明, 在居里温度点(TC = 178 K)以下140 K(TA)处存在特殊的磁结构, 为铁磁态与反铁磁态共存的磁性过渡态. 研究发现, 在100—160 K出现负的反常“凸形”磁阻, 且在TA附近出现最大临界磁场B0, 为1.41 T, 同时霍尔电阻率ρyx也在TA处取得最大值约20 μΩ·cm. 这可能是由于铁磁态与反铁磁态之间会相互竞争形成非平凡的自旋织构, 导致TA附近独特的电输运行为. Co3Sn2S2在低温下的散射机制为声学波散射和电子-声子散射的共同作用, 在60—140 K时, 自旋无序的增强会引起电子-声子散射增强, 使得的塞贝克系数S出现平台特征. 研究表明, Co3Sn2S2在低温下的特殊磁结构和电子自旋对其电-热输运行为有着重要影响.
    Co3Sn2S2 is a magnetic Weyl semimetal with special magnetic and electronic structure. Its unique band structure makes it have many interesting physical properties such as abnormal Hall effect, negative magnetoresistance effect, and abnormal Nernst effect. In this work, high quality Co3Sn2S2 single crystal with a dimension of 8 mm×7 mm×0.5 mm is synthesized by self-flux method. We measure its electrical transport properties (magnetoresistance effect, Hall effect, etc.) and thermal transport properties (Seebeck effect) at low temperature. The free surface of the single crystal exhibits obvious layered growth characteristics, indicating that the Co3Sn2S2 crystal grows along the c-axis direction. The value of the normalized resistivity ρ3 K/ρ300 K for the single crystal sample at 3 K is only 0.08, indicating that the crystal quality of the sample is at a relatively high level. The thermomagnetic (M-T) curves show that a special magnetic structure near 140 K (TA) below the Curie temperature point (TC = 178 K). This special magnetic structure is a magnetic transition state in which ferromagnetic state and antiferromagnetic state coexist, making them appear as a local minimum point in the M-T curve. The Co3Sn2S2 shows a negative anomalous “convex” magnetoresistance in a large range of 100—160 K, and there exists a maximum critical magnetic field B0 (1.41 T), near TA. The coercivity HC drops to almost zero at TA and the Hall resistivity ρyx also reaches a maximum value of about 20 μΩ·cm. This may be due to the competition between ferromagnetic state and antiferromagnetic state to form non-trivial spin texture, resulting in the unique electrical transport behavior near TA. When the temperature rises to TC, the Co3Sn2S2 undergoes a ferromagnetic phase transition, with a saturation magnetization of MS, anomalous Hall conductivity $ {\sigma }_{yx}^{\rm A} $, and Hall resistivity ρyx sharply decreasing. Large anomalous Hall conductance $ {\sigma }_{yx}^{A} $ and anomalous Hall angle $ {\sigma }_{yx}^{\rm A}/\sigma $ are also present in Co3Sn2S2, with these values reaching 1.4×103 Ω−1·cm−1 and 18%, respectively. The magnetoresistance measurements reveal that the variation of the magnetoresistance with the magnetic field is due to the combination of linear and parabolic contributions. The change in magnetoresistance with the angle θ between the magnetic field B and the current I has a reversal symmetry with C2x symmetry, and the change in θ does not affect the contribution of its magnetoresistance source. In addition, positive magnetoresistance and negative magnetoresistance are found to be shifted at about 60 K. the shift in positive magnetoresistance and negative magnetoresistance are mainly attributed to the competing positive contribution of the Lorentz force to the magnetoresistance and the negative contribution of the spin disorder. The scattering mechanism of Co3Sn2S2 at low temperature is a combination of acoustic wave scattering and electron– phonon scattering. At 60–140 K, the enhancement of spin disorder causes enhanced electron–phonon scattering, resulting in a plateau characteristic of the Seebeck coefficient S. The research shows that the special magnetic structure and electron spin of Co3Sn2S2 at low temperatures have an important influence on its electrothermal transport behavior.
      通信作者: 孙志刚, sun_zg@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174297, 12204342)和国家重点研究发展计划(批准号: 2018YFE0111500)资助的课题.
      Corresponding author: Sun Zhi-Gang, sun_zg@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174297, 12204342) and the National Key Research and Development Program of China (Grant No. 2018YFE0111500).
    [1]

    Yan M H, Jin Y C, Hou X F, Guo Y F, Tsaturyan A, Makarova A, Smirnov D, Dedkov Y, Voloshina E 2021 J. Phys. Chem. Lett. 12 9807Google Scholar

    [2]

    Dedkov Y S, Holder M, Molodtsov S, Rosner H 2008 J. Phys. Conf. Ser. 100 072011

    [3]

    Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q S, Xi X K, Wang W H, Wu G S, Shen B G, Liu Q H, Liu E K 2020 Adv. Funct. Mater. 30 2000830Google Scholar

    [4]

    Thakur G S, Vir P, Guin S N, Shekhar C, Weihrich R, Sun Y, Kumar N, Felser C 2020 Chem. Mater. 32 1612Google Scholar

    [5]

    Lachman E, Murphy R A, Maksimovic N, Kealhofer R, Haley S, McDonald R D, Long J R, Analytis J G 2020 Nat. Commun. 11 560Google Scholar

    [6]

    Liu E K, Sun Y, Kumar N, Muchler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süβ V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [7]

    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar

    [8]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar

    [9]

    Papaj M, Fu L 2021 Phys. Rev. B 103 075424Google Scholar

    [10]

    Yang H Y, You W, Wang J L, Huang J W, Xi C Y, Xu X F, Cao C, Tian M L, Xu Z A, Dai J H, Li Y K 2020 Phys. Rev. Mater. 4 024202Google Scholar

    [11]

    Ding L C, Koo J, Xu L C, Li X K, Lu X F, Zhao L X, Wang Q, Yin Q W, Lei H C, Yan B H, Zhu Z W, Behnia K 2019 Phys. Rev. X 9 041061

    [12]

    Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar

    [13]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2017 Phys. Rev. B 96 014429Google Scholar

    [14]

    Shen J L, Zeng Q Q, Zhang S, Tong W, Ling L S, Xi C Y, Wang Z S, Liu E K, Wang W H, Wu G H, Shen B G 2019 Appl. Phys. Lett. 115 212403Google Scholar

    [15]

    Zhang Q, Okamoto S, Samolyuk G D, Stone M B, Kolesnikov A I, Xue R, Yan J, McGuire M A, Mandrus D, Tennant D A 2021 Phys Rev Lett 127 117201Google Scholar

    [16]

    Wu H C, Sun P J, Hsieh D J, Chen H J, Kakarla D C, Deng L Z, Chu C W, Yang H D 2020 Mater. Today Phys. 12 100189Google Scholar

    [17]

    Lee C, Vir P, Manna K, Shekhar C, Moore J E, Kastner M A, Felser C, Orenstein J 2022 Nat. Commun. 13 3000Google Scholar

    [18]

    Soh J R, Yi C, Zivkovic I, Qureshi N, Stunault A, Ouladdiaf B, Rodriguez-Velamazan J A, Shi Y, Ronnow H M, Boothroyd A T 2022 Phys. Rev. B 105 094435Google Scholar

    [19]

    Guguchia Z, Verezhak J A T, Gawryluk D J, Tsirkin S S, Yin J X, Belopolski I, Zhou H, Simutis G, Zhang S S, Cochran T A, Chang G, Pomjakushina E, Keller L, Skrzeczkowska Z, Wang Q, Lei H C, Khasanov R, Amato A, Jia S, Neupert T, Luetkens H, Hasan M Z 2020 Nat. Commun. 11 559Google Scholar

    [20]

    Nagpal V, Patnaik S 2020 J. Phys. Condens. Matter 32 405602Google Scholar

    [21]

    Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T B, Thomas A 2019 Appl. Phys. Lett. 114 092403Google Scholar

    [22]

    Ding L C, Koo J, Yi C J, Xu L C, Zuo H K, Yang M, Shi Y G, Yan B H, Behnia K, Zhu Z W 2021 J. Phys. D Appl. Phys. 54 454003Google Scholar

    [23]

    Rathod S, Megha, Lakhani A, Kumar D 2020 J. Solid State Chem. 289 121461Google Scholar

    [24]

    Shama, Gopal R K, Singh Y 2020 J. Magn. Magn. Mater. 502 166547Google Scholar

    [25]

    Yan B, Felser C (Marchetti M C, Sachdev S ed) 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [26]

    Holder M, Dedkov Y S, Kade A, Rosner H, Schnelle W, Leithe-Jasper A, Weihrich R, Molodtsov S L 2009 Phys. Rev. B 79 205116Google Scholar

    [27]

    Lin X, Bud'ko S L, Canfield P C 2012 Philos. Mag. 92 2436Google Scholar

    [28]

    Rathod S, Megha, Lakhani A, Kumar D 2020 AIP Conf. Proc. 2220 060007

    [29]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544Google Scholar

    [30]

    Vu T V, Lavrentyev A A, Gabrelian B V, Sabov V I, Sabov M Y, Pogodin A I, Barchiy I E, Fedorchuk A O, Balinska A, Bak Z, Khyzhun O Y, Piasecki M 2020 J. Alloys Compd. 848 156485Google Scholar

    [31]

    Jiang B Y, Zhao J J, Qian Y J, Zhang S, Qiang X B, Wang L J Y, Bi R, Fan J W, Lu H Z, Liu E K, Wu X S 2022 Phys. Rev. Lett. 129 056601Google Scholar

    [32]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2016 J. Phys. Soc. Jpn. 85 064706Google Scholar

    [33]

    Liu C, Yi C J, Wang X Y, Shen J L, Xie T, Yang L, Fennel T, Stuhr U, Li S L, Weng H M, Shi Y G, Liu E K, Luo H Q 2021 Sci. China Phys. Mech. Astron. 64 257511Google Scholar

    [34]

    Hu J, Kan X, Chen Z, Zheng G, Ma Y 2022 J. Am. Ceram. Soc. 105 4827Google Scholar

    [35]

    Wang J, Luo F, Zhu C, Zhang S, Yang Z, Wang J F, He X, Zhang Y, Sun Z G 2022 J. Appl. Phys. 132 135103Google Scholar

    [36]

    Abrikosov A A 2000 Europhys. Lett. 49 789Google Scholar

    [37]

    Shama, Singh R K 2019 AIP Conf. Proc. 2115 030454

    [38]

    Dos Reis R D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M, Hassinger E 2016 New J. Phys. 18 085006Google Scholar

    [39]

    Wang J, Zhu C, Luo F, Wang J F, He X, Zhang Y, Liu H X, Sun Z G 2023 ACS Appl. Mater. Interfaces 15 8105Google Scholar

    [40]

    Fivaz R, Mooser E 1964 Phys. Rev. 136 A833Google Scholar

    [41]

    Liu Y, Stavitski E, Attenkofer K, Petrovic C 2018 Phys. Rev. B 97 165415Google Scholar

    [42]

    Geishendorf K, Vir P, Shekhar C, Felser C, Facio J I, van den Brink J, Nielsch K, Thomas A, Goennenwein S T B 2020 Nano Lett. 20 300Google Scholar

    [43]

    Mangelis P, Vaqueiro P, Jumas J C, da Silva I, Smith R I, Powell A V 2017 J. Solid State Chem. 251 204Google Scholar

    [44]

    Zhu C, Wang J, Luo F, Zhang S, Wang J F, Zhang Y, Liu H X, Sun Z G 2022 ACS Appl. Mater. Interfaces 14 38854Google Scholar

  • 图 1  (a) Co3Sn2S2的粉末XRD结果, 黑×表示测量的衍射峰强度, 红线为计算的衍射峰强度, 蓝色的线条表示计算计算数据与测量数据之差, 绿色的线条表示Bragg衍射峰的位置; (b) Co3Sn2S2的晶体表面XRD结果, XRD的峰对应于六方晶格的ab平面, 插图为Co3Sn2S2晶体的光学影像

    Fig. 1.  (a) Powder XRD results of Co3Sn2S2, black × represents the measured diffraction peak intensity, the red line represents the calculated diffraction peak intensity, the blue line represents the difference between the calculated data and the measured data, and the green line represents the position of the Bragg diffraction peak; (b) XRD results of the crystal surface of Co3Sn2S2. The peak of XRD corresponds to the ab plane of the hexagonal lattice. The insert shows the optical image of Co3Sn2S2 crystal.

    图 2  (a) Co3Sn2S2样品在2000倍下的表面SEM结果; (b) EDS面扫区域形貌; (c)—(e) Co3Sn2S2样品的EDS面扫描结果

    Fig. 2.  (a) Surface SEM results of Co3Sn2S2 sample at 2000 times; (b) EDS surface scanning area morphology; (c)–(e) EDS surface scan results of Co3Sn2S2 sample.

    图 3  (a) 零场下Co3Sn2S2的电阻率ρ随温度变化的曲线, 插图为电阻率测量原理图; (b) 以 300 K 下的电阻率为基准的归一化电阻率 ρ/ρ300 K随温度的变化曲线, 虚线是文献[6, 7, 15, 31]中报道的样品的归一化电阻率

    Fig. 3.  (a) Temperature dependence of resistivity ρ of Co3Sn2S2 at zero field, the insert is diagram of resistivity measurement; (b) temperature dependence of normalized resistivity ρ/ρ300 K based on resistivity at 300 K. The dotted line is the normalized resistivity of the sample reported in Ref.[6, 7, 15, 31].

    图 4  (a) Hc轴, 磁场为50 Oe时, Co3Sn2S2样品的磁化强度M随温度的变化曲线, 插图展示的是磁化强度的一阶微分dM/dT随温度变化曲线; (b) Hc轴, Hc轴, 在50 K, 100 K, 150 K下磁化强度M随磁场H的变化曲线: (c) Hc轴, 在50—300 K下的磁化强度M随磁场H的变化曲线; (d) Hc轴, 饱和磁化强度MS和矫顽力HC随温度的变化曲线

    Fig. 4.  (a) Hc axis, the magnetic field is 50 Oe, the temperature dependence of the magnetization M of Co3Sn2S2. The insert shows the dM/dT with T; (b) Hc axis, Hc axis, magnetic field dependence of magnetization at 50 K, 100 K, 150 K; (c) Hc axis, M-H at 50–300 K; (d) Hc axis, the temperature dependence of the saturation magnetization MS and coercivity HC.

    图 5  (a)当BI时, 3—220 K的磁阻曲线; (b) 当BI时, B = 7 T下磁阻MR随温度变化曲线, 插图为100—160 K的“凸形”磁阻的临界磁场B0随温度变化曲线; (c) 当BI时, 3 K下磁阻MR随磁场的变化, 黑色的实线表示根据公式拟合的值(MR = aB 2+cB), 插图为3 K下dMR/dB随磁场的变化; (d) 3 K下, 磁场B与电流I在不同夹角下的磁阻变化曲线, 插图为MR随夹角变化的曲线, 红色实线为使用正弦函数拟合的值

    Fig. 5.  (a) BI, the magnetoresistance(MR) curve of 3–220 K; (b) BI, the curve of MR versus temperature at B = 7 T , the insert is the critical point B0 of “convex” MR versus temperature at 100–160 K; (c) BI, the MR versus the magnetic field at 3 K, the black solid line represents the value fitted according to the formula (MR = aB 2+cB), and the insert shows the dMR/dB versus the magnetic field at 3 K; (d) the MR of different angle between the B and I versus the magnetic field B at 3 K, and the insert is the MR versus different angles, the red solid line represents the value fitted according to sine function.

    图 6  (a) 不同温度下Co3Sn2S2的霍尔电阻率ρyx随磁场变化的曲线, 插图为霍尔电阻率测量原理图; (b) 反常霍尔电导率$ {\sigma }_{yx}^{{\rm{A}}} $与霍尔电阻率ρyx随温度变化的曲线; (c) 反常霍尔角$ {\sigma }_{yx}^{{\rm{A}}}/\sigma $与随温度变化的曲线; (d) 载流子浓度n随温度变化曲线; (e) 载流子迁移率μ随温度变化曲线, 插图为ln μ随ln T的变化曲线

    Fig. 6.  (a) Hall resistivity ρyx versus the magnetic field of Co3Sn2S2 at different temperatures, the insert is the diagram of Hall resistivity measurement; (b) the temperature dependence of abnormal Hall conductivity $ {\sigma }_{yx}^{{\rm{A}}} $ and Hall resistivity ρyx; (c) the temperature dependence of abnormal Hall angle $ {\sigma }_{yx}^{{\rm{A}}}/\sigma $; (d) the carrier concentration n versus the temperature; (e) the carrier mobility μ versus the temperature, the insert is the ln μ versus ln T.

    图 7  (a) Co3Sn2S2的电导率σ随温度变化的曲线; (b) 塞贝克系数S随温度变化的曲线; (c) 功率因子PF随温度变化的曲线; (d) 使用载流子输运的能带模型计算获得的有效质量m* 随温度变化的曲线

    Fig. 7.  Temperature-dependent (a) conductivity σ, (b) Seebeck coefficient S, (c) power factor PF of Co3Sn2S2; (d) effective mass m* calculated according to the energy band model of carrier transport.

    图 8  (a) Co3Sn2S2的归一化饱和磁化强度MS, 归一化矫顽力HC, 归一化反常霍尔电导$ {\sigma }_{yx}^{{\rm{A}}} $, 归一化霍尔电阻率ρyx随温度的变化曲线及归一化ZFC与FC曲线; (b) 归一化塞贝克系数S, 归一化磁阻MR随温度的变化曲线, 插图为lnμ随lnT的变化曲线

    Fig. 8.  (a) Temperature-dependent normalized saturation magnetization MS, normalized coercivity HC, normalized anomalous Hall conductivity $ {\sigma }_{yx}^{{\rm{A}}} $, normalized Hall resistivity ρyx and normalized ZFC and FC curves of Co3Sn2S2; (b) temperature-dependent normalized Seebeck coefficient S and normalized magnetoresistance MR, the insert is the lnμ versus lnT

    表 1  使用公式MR = aB 2+cB拟合BI在不同夹角下的MR - B曲线得到的拟合值

    Table 1.  The fitting values of the MR-B curve according to the formula MR = aB 2+cB at different angles between B and I.

    Angle/(°)aca/c
    00.111250.397860.27962
    150.200630.765170.26221
    300.312821.090810.28678
    600.373451.521220.24549
    750.423581.665080.25439
    900.424551.711720.24803
    下载: 导出CSV
  • [1]

    Yan M H, Jin Y C, Hou X F, Guo Y F, Tsaturyan A, Makarova A, Smirnov D, Dedkov Y, Voloshina E 2021 J. Phys. Chem. Lett. 12 9807Google Scholar

    [2]

    Dedkov Y S, Holder M, Molodtsov S, Rosner H 2008 J. Phys. Conf. Ser. 100 072011

    [3]

    Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q S, Xi X K, Wang W H, Wu G S, Shen B G, Liu Q H, Liu E K 2020 Adv. Funct. Mater. 30 2000830Google Scholar

    [4]

    Thakur G S, Vir P, Guin S N, Shekhar C, Weihrich R, Sun Y, Kumar N, Felser C 2020 Chem. Mater. 32 1612Google Scholar

    [5]

    Lachman E, Murphy R A, Maksimovic N, Kealhofer R, Haley S, McDonald R D, Long J R, Analytis J G 2020 Nat. Commun. 11 560Google Scholar

    [6]

    Liu E K, Sun Y, Kumar N, Muchler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süβ V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [7]

    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar

    [8]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar

    [9]

    Papaj M, Fu L 2021 Phys. Rev. B 103 075424Google Scholar

    [10]

    Yang H Y, You W, Wang J L, Huang J W, Xi C Y, Xu X F, Cao C, Tian M L, Xu Z A, Dai J H, Li Y K 2020 Phys. Rev. Mater. 4 024202Google Scholar

    [11]

    Ding L C, Koo J, Xu L C, Li X K, Lu X F, Zhao L X, Wang Q, Yin Q W, Lei H C, Yan B H, Zhu Z W, Behnia K 2019 Phys. Rev. X 9 041061

    [12]

    Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar

    [13]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2017 Phys. Rev. B 96 014429Google Scholar

    [14]

    Shen J L, Zeng Q Q, Zhang S, Tong W, Ling L S, Xi C Y, Wang Z S, Liu E K, Wang W H, Wu G H, Shen B G 2019 Appl. Phys. Lett. 115 212403Google Scholar

    [15]

    Zhang Q, Okamoto S, Samolyuk G D, Stone M B, Kolesnikov A I, Xue R, Yan J, McGuire M A, Mandrus D, Tennant D A 2021 Phys Rev Lett 127 117201Google Scholar

    [16]

    Wu H C, Sun P J, Hsieh D J, Chen H J, Kakarla D C, Deng L Z, Chu C W, Yang H D 2020 Mater. Today Phys. 12 100189Google Scholar

    [17]

    Lee C, Vir P, Manna K, Shekhar C, Moore J E, Kastner M A, Felser C, Orenstein J 2022 Nat. Commun. 13 3000Google Scholar

    [18]

    Soh J R, Yi C, Zivkovic I, Qureshi N, Stunault A, Ouladdiaf B, Rodriguez-Velamazan J A, Shi Y, Ronnow H M, Boothroyd A T 2022 Phys. Rev. B 105 094435Google Scholar

    [19]

    Guguchia Z, Verezhak J A T, Gawryluk D J, Tsirkin S S, Yin J X, Belopolski I, Zhou H, Simutis G, Zhang S S, Cochran T A, Chang G, Pomjakushina E, Keller L, Skrzeczkowska Z, Wang Q, Lei H C, Khasanov R, Amato A, Jia S, Neupert T, Luetkens H, Hasan M Z 2020 Nat. Commun. 11 559Google Scholar

    [20]

    Nagpal V, Patnaik S 2020 J. Phys. Condens. Matter 32 405602Google Scholar

    [21]

    Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T B, Thomas A 2019 Appl. Phys. Lett. 114 092403Google Scholar

    [22]

    Ding L C, Koo J, Yi C J, Xu L C, Zuo H K, Yang M, Shi Y G, Yan B H, Behnia K, Zhu Z W 2021 J. Phys. D Appl. Phys. 54 454003Google Scholar

    [23]

    Rathod S, Megha, Lakhani A, Kumar D 2020 J. Solid State Chem. 289 121461Google Scholar

    [24]

    Shama, Gopal R K, Singh Y 2020 J. Magn. Magn. Mater. 502 166547Google Scholar

    [25]

    Yan B, Felser C (Marchetti M C, Sachdev S ed) 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [26]

    Holder M, Dedkov Y S, Kade A, Rosner H, Schnelle W, Leithe-Jasper A, Weihrich R, Molodtsov S L 2009 Phys. Rev. B 79 205116Google Scholar

    [27]

    Lin X, Bud'ko S L, Canfield P C 2012 Philos. Mag. 92 2436Google Scholar

    [28]

    Rathod S, Megha, Lakhani A, Kumar D 2020 AIP Conf. Proc. 2220 060007

    [29]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544Google Scholar

    [30]

    Vu T V, Lavrentyev A A, Gabrelian B V, Sabov V I, Sabov M Y, Pogodin A I, Barchiy I E, Fedorchuk A O, Balinska A, Bak Z, Khyzhun O Y, Piasecki M 2020 J. Alloys Compd. 848 156485Google Scholar

    [31]

    Jiang B Y, Zhao J J, Qian Y J, Zhang S, Qiang X B, Wang L J Y, Bi R, Fan J W, Lu H Z, Liu E K, Wu X S 2022 Phys. Rev. Lett. 129 056601Google Scholar

    [32]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2016 J. Phys. Soc. Jpn. 85 064706Google Scholar

    [33]

    Liu C, Yi C J, Wang X Y, Shen J L, Xie T, Yang L, Fennel T, Stuhr U, Li S L, Weng H M, Shi Y G, Liu E K, Luo H Q 2021 Sci. China Phys. Mech. Astron. 64 257511Google Scholar

    [34]

    Hu J, Kan X, Chen Z, Zheng G, Ma Y 2022 J. Am. Ceram. Soc. 105 4827Google Scholar

    [35]

    Wang J, Luo F, Zhu C, Zhang S, Yang Z, Wang J F, He X, Zhang Y, Sun Z G 2022 J. Appl. Phys. 132 135103Google Scholar

    [36]

    Abrikosov A A 2000 Europhys. Lett. 49 789Google Scholar

    [37]

    Shama, Singh R K 2019 AIP Conf. Proc. 2115 030454

    [38]

    Dos Reis R D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M, Hassinger E 2016 New J. Phys. 18 085006Google Scholar

    [39]

    Wang J, Zhu C, Luo F, Wang J F, He X, Zhang Y, Liu H X, Sun Z G 2023 ACS Appl. Mater. Interfaces 15 8105Google Scholar

    [40]

    Fivaz R, Mooser E 1964 Phys. Rev. 136 A833Google Scholar

    [41]

    Liu Y, Stavitski E, Attenkofer K, Petrovic C 2018 Phys. Rev. B 97 165415Google Scholar

    [42]

    Geishendorf K, Vir P, Shekhar C, Felser C, Facio J I, van den Brink J, Nielsch K, Thomas A, Goennenwein S T B 2020 Nano Lett. 20 300Google Scholar

    [43]

    Mangelis P, Vaqueiro P, Jumas J C, da Silva I, Smith R I, Powell A V 2017 J. Solid State Chem. 251 204Google Scholar

    [44]

    Zhu C, Wang J, Luo F, Zhang S, Wang J F, Zhang Y, Liu H X, Sun Z G 2022 ACS Appl. Mater. Interfaces 14 38854Google Scholar

  • [1] 樊译颉, 张阮, 陈宇, 蔡星汉. CrCl3隧穿磁阻的界面效应与多场效应调控. 物理学报, 2024, 73(13): 137302. doi: 10.7498/aps.73.20240431
    [2] 柯少秋, 叶先峰, 张昊俊, 聂晓蕾, 陈天天, 刘承姗, 朱婉婷, 魏平, 赵文俞. 正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜. 物理学报, 2024, 73(22): 1-11. doi: 10.7498/aps.73.20240701
    [3] 扈仕林, 刘均华, 邓志雄, 肖文, 杨瞻, 陈凯, 廖昭亮. Pt/La0.67Sr0.33MnO3异质结中的反常霍尔效应. 物理学报, 2023, 72(9): 097503. doi: 10.7498/aps.72.20221852
    [4] 刘晓伟, 熊俊林, 王利铮, 梁世军, 程斌, 缪峰. 单晶Ta3FeS6薄膜中巨大的矫顽场. 物理学报, 2022, 71(12): 127503. doi: 10.7498/aps.71.20220699
    [5] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运. 物理学报, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [6] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运. 物理学报, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [7] 何斌, 何雄, 刘国强, 朱璨, 王嘉赋, 孙志刚. SnSe2的忆阻及磁阻效应. 物理学报, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [8] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究. 物理学报, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [9] 张树玲, 陈炜晔, 张勇. Co基金属纤维不对称巨磁阻抗效应. 物理学报, 2015, 64(16): 167501. doi: 10.7498/aps.64.167501
    [10] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 物理学报, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [11] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [12] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子. 物理学报, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [13] 丁斌峰, 相凤华, 王立明, 王洪涛. He+辐照对Ga0.94Mn0.06As薄膜铁磁性的改善. 物理学报, 2012, 61(4): 046105. doi: 10.7498/aps.61.046105
    [14] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [15] 张树玲, 孙剑飞, 邢大伟. 磁场退火对Co基熔体抽拉丝巨磁阻抗效应的影响. 物理学报, 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [16] 王敬平, 孟 健. 磁场下合成Fe3O4粉体的隧道磁阻. 物理学报, 2008, 57(2): 1197-1201. doi: 10.7498/aps.57.1197
    [17] 聂 颖, 隋 郁, 宋秀丹, 王先杰, 程金光, 千正男, 苏文辉. 成型压力对CrO2低温输运性质的影响. 物理学报, 2006, 55(6): 3038-3042. doi: 10.7498/aps.55.3038
    [18] 朱 博, 桂永胜, 周文政, 商丽燕, 郭少令, 褚君浩, 吕 捷, 唐 宁, 沈 波, 张福甲. Al0.22Ga0.78N/GaN二维电子气中的弱局域和反弱局域效应. 物理学报, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [19] 郭忠诚, 郑萍, 王楠林, 陈兆甲, Y. MAENO, Z. Q. MAO. Sr2RuO4正常态的c方向的磁阻的研究. 物理学报, 2001, 50(9): 1824-1828. doi: 10.7498/aps.50.1824
    [20] 黄启圣, 吴自强, 田种运. 80—500°K间InSb的电导率、霍尔效应及磁阻效应. 物理学报, 1964, 20(5): 418-428. doi: 10.7498/aps.20.418
计量
  • 文章访问数:  3724
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-06-24
  • 上网日期:  2023-07-06
  • 刊出日期:  2023-09-05

/

返回文章
返回