搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜

柯少秋 叶先峰 张昊俊 聂晓蕾 陈天天 刘承姗 朱婉婷 魏平 赵文俞

引用本文:
Citation:

正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜

柯少秋, 叶先峰, 张昊俊, 聂晓蕾, 陈天天, 刘承姗, 朱婉婷, 魏平, 赵文俞
cstr: 32037.14.aps.73.20240701

xFe/Bi0.5Sb1.5Te3 thermoelectromagnetic films with coexistence of positive and negative magnetoresistance

Ke Shao-Qiu, Ye Xian-Feng, Zhang Hao-Jun, Nie Xiao-Lei, Chen Tian-Tian, Liu Cheng-Shan, Zhu Wan-Ting, Wei Ping, Zhao Wen-Yu
cstr: 32037.14.aps.73.20240701
PDF
HTML
导出引用
  • 具有优异电输运性能的热电薄膜是发展高效面内散热技术的关键材料, 但是过低的电输运性能是制约其应用的重要难题. 热电磁耦合新效应是近年来发展的一种优化综合热电性能的新方法. 为了探索热电磁耦合新效应对热电薄膜电输运性能的影响机制, 本研究发展了一种球磨分散-丝网印刷-热压固化一体化成型的方法, 成功制备了一系列Fe纳米粒子作为第二相的xFe/BST/环氧树脂热电磁薄膜, 并重点研究了其热电磁耦合作用及其对电热输运性能的影响规律. 研究发现, xFe/Bi0.5Sb1.5Te3 (BST)/环氧树脂热电磁薄膜中存在正、负磁阻共存的现象; BST(000l)择优取向因子与正磁阻(MR+)之间呈正比例关系并增加热电磁薄膜的电导率; 源于强铁磁性Fe纳米粒子局部磁矩的自旋相关散射的负磁阻(MR)会增加Seebeck系数. 因此, 室温附近Fe/BST/环氧树脂热电磁薄膜的功率因子高达2.87 mW/(K2·m), 与BST/环氧树脂热电薄膜相比, 提高了78%. 这些结果表明, 热电磁薄膜中正、负磁阻的共存不仅可解耦热电材料中电导率与Seebeck系数之间的耦合关系, 还可以为磁纳米粒子诱导优异热电转换性能提供新的物理机制.
    Thermoelectric (TE) films with excellent electrical transport property are key materials for developing efficient in-plane heat dissipation technology, but their low electrical transport property is a challenge that restricts their application. Recently, a new thermo-electro-magnetic coupling effect has been proposed to significantly improve the comprehensive TE performance. In order to explore the influence of the above effects on the electric transport property of TE films, we develop an integrated preparation method through ball milling dispersion, screen-printing and hot-pressing curing, obtaining a series of xFe/Bi0.5Sb1.5Te3 (BST)/epoxy TE films in which Fe nanoparticles serve as the second phase, resulting in the thermo-electro-magnetic coupling effect , and also we study their influence on the electrothermal transport performance. The results are shown below. The positive and negative magnetoresistance are co-existent in xFe/BST/epoxy thermoelectromagnetic films; the preferred orientation factor of BST (000l) is positively proportional to the positive magnetoresistance (MR+), resulting in an increase of the conductivity; the spin-dependent scattering of negative magnetoresistance (MR) derived from the local magnetic moment of strong ferromagnetic Fe nanoparticles increases the Seebeck coefficient. Hence, the power factor of Fe/BST/epoxy thermoelectromagnetic film near room temperature reaches 2.87 mW⋅K–2⋅m–1, which is 78% higher than that of BST/epoxy thermoelectric film. These results indicate that the coexistence of positive and negative magnetoresistance in thermoelectromagnetic films can not only relieve the coupling relationship between conductivity and Seebeck coefficient in TE materials, but also provide a new physical mechanism for the excellent TE conversion performance induced by magnetic nanoparticles.
      通信作者: 聂晓蕾, xiaoleinie@whut.edu.cn ; 赵文俞, wyzhao@whut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFB3809400)、国家自然科学基金(批准号: 52130203, 52102301, 52102298, 52172232, 92163122, 52202034, 52201256)、湖北省自然科学基金(批准号: 2024AFB811)和广东省基础与应用基础研究基金(批准号: 2022B1515120005)资助的课题.
      Corresponding author: Nie Xiao-Lei, xiaoleinie@whut.edu.cn ; Zhao Wen-Yu, wyzhao@whut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFB3809400), the National Natural Science Foundation of China (Grant Nos. 52130203, 52102301, 52102298, 52172232, 92163122, 52202034, 52201256), the Natural Science Foundation of Hubei Province, China (Grant No. 2024AFB811), and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2022B1515120005).
    [1]

    Wang L M, Zhang Z M, Liu Y C, Wang B R, Fang L, Qiu J J, Zhang K, Wang S R 2018 Nat. Commun. 9 3817Google Scholar

    [2]

    Yang Q Y, Yang S Q, Qiu P F, Peng L M, Wei T R, Zhang Z, Shi X, Chen L D 2022 Science 377 854Google Scholar

    [3]

    He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [4]

    Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger-Sittner C, Stöger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q, Bauer E 2019 Nature 576 85Google Scholar

    [5]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J Q, Zhao L D 2021 Science 373 556Google Scholar

    [6]

    Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y, He J Q 2022 Science 377 208Google Scholar

    [7]

    Chang C, Wu M H, He D Q, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360 778Google Scholar

    [8]

    Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y, Shi J 2017 Nature 549 247Google Scholar

    [9]

    Zhao W Y, Liu Z Y, Wei P, Zhang Q J, Zhu W T, Su X L, Tang X F, Yang J H, Liu Y, Shi J, Chao Y M, Lin S Q, Pei Y Z 2017 Nat. Nanotechnol. 12 55Google Scholar

    [10]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [11]

    Ma S F, Li C C, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Sun F H, Zhao W Y, Zhang Q J 2021 Sci. China Mater. 64 2835Google Scholar

    [12]

    Li C C, Ma S F, Wei P, Zhu W T, Nie X L, Sang X H, Sun Z, Zhang Q J, Zhao W Y 2020 Energy Environ. Sci. 13 535Google Scholar

    [13]

    Li C C, Ma S F, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Zhao W Y, Zhang Q J 2021 Mater. Today Phys. 19 100409Google Scholar

    [14]

    Xing L, Cui W, Sang X H, Hu F, Wei P, Zhu W T, Nie X L, Zhang Q J, Zhao W Y 2021 J. Materiomics. 7 998Google Scholar

    [15]

    Li C C, Zhao W Y, Zhang Q J 2022 Sci. Bull. 67 891Google Scholar

    [16]

    Zhao Y, Nie X L, Sun C L, Chen Y F, Ke S Q, Li C, Zhu W T, Sang X H, Zhao W Y, Zhang Q J 2021 ACS Appl. Mater. Interfaces 13 58746Google Scholar

    [17]

    Chen Y F, Nie X L, Sun C L, Ke S Q, Xu W J, Zhao Y, Zhu W T, Zhao W Y, Zhang Q J 2022 Adv. Funct. Mater. 32 2111373Google Scholar

    [18]

    Boona S R, Vandaele K, Boona I N, McComb D W, Heremans J P 2016 Nat. Commun. 7 13714Google Scholar

    [19]

    Uchida K I 2022 Nat. Mater. 21 136Google Scholar

    [20]

    Sakai A, Minami S, Koretsune T, Chen T T, Higo T, Wang Y, Nomoto T, Hirayama M, Miwa S, Nishio-Hamane D, Ishii F, Arita R, Nakatsuji S 2020 Nature 581 53Google Scholar

    [21]

    Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y, Felser C 2022 Nat. Mater. 21 203Google Scholar

    [22]

    Chen T T, Minami S, Sakai A, Wang Y, Feng Z, Nomoto T, Hirayama M, Ishii R, Koretsune T, Arita R, Nakatsuji S 2022 Sci. Adv. 8 eabk1480Google Scholar

    [23]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar

    [24]

    Zhao L, Deng H, Korzhovska I, Chen Z, Konczykowski M, Hruban A, Oganesyan V, Krusinelbaum L 2014 Nat. Mater. 13 580Google Scholar

    [25]

    Pippard A B 1989 Magnetoresistance in Metals (New York: Cambridge University Press) pp23–24

    [26]

    Mu X, Zhou H Y, He D Q, Zhao W Y, Wei P, Zhu W T, Nie X L, Liu H J, Zhang Q J 2017 Nano Energy 33 55Google Scholar

    [27]

    Khosla R P, Fischer J R 1970 Phys. Rev. B 2 4084Google Scholar

    [28]

    Kawabata A 1980 Solid State Commun. 34 431Google Scholar

  • 图 1  xFe/BST/环氧树脂热电磁薄膜物相组成 (a) xFe/BST/环氧树脂热电磁薄膜的XRD谱; (b) 2θ为27.8°—28.6°的放大XRD谱

    Fig. 1.  Phase constituents of xFe/BST/epoxy thermoelectromagnetic films: (a) XRD patterns of xFe/BST/epoxy thermoelectromagnetic films; (b) the enlarged XRD patterns in the 2θ range of 27.8°–28.6°.

    图 2  xFe/BST/环氧树脂热电磁薄膜的HRTEM微观结构 (a) Fe02的HAADF-STEM像; (b)—(f) Bi, Te, Sb, Fe和O的面分布

    Fig. 2.  Microstructures of xFe/BST/epoxy thermoelectromagnetic films from HRTEM: (a) HAADF-STEM image of Fe02; (b)–(f) corresponding elemental mappings of Bi, Te, Sb, Fe, and O.

    图 3  xFe/BST/环氧树脂热电磁薄膜电输运性能 (a)电导率和Seebeck系数; (b) 功率因子

    Fig. 3.  Electrical transport properties of the xFe/BST/epoxy thermoelectromagnetic films: (a) Electrical conductivity and Seebeck coefficient; (b) power factor.

    图 4  xFe/BST/环氧树脂热电磁薄膜的磁各向异性 (a) 测量装置; (b) Fe00, (c) Fe01, (d) Fe02, (e) Fe03和(f) Fe04在300 K时⊥H和∥HM-H曲线. 图(b)—(f)中右下插图是零场(H = 0)附近的M-H曲线, 所有xFe/BST/环氧树脂热电磁薄膜的M-H曲线已经进行了扣除BST/环氧树脂热电薄膜背底的数据处理

    Fig. 4.  Magnetic anisotropy of xFe/BST/epoxy thermoelectromagnetic films: (a) Measuring setup; M-H curves of (b) Fe00, (c) Fe01, (d) Fe02, (e) Fe03, and (f) Fe04⊥H (and ∥H) at 300 K. The lower-right insets in panels (b)–(f) show the M-H curves near zero field (H = 0), the M-H curves of xFe/BST/epoxy thermoelectromagnetic films were processed by BST/epoxy films background subtraction.

    图 5  xFe/BST/环氧树脂热电磁薄膜磁阻特征 (a), (b) 1.0—2.5 T范围内, 50 K时Fe00和Fe02的MR随磁场H与面外方向夹角θ的变化曲线; (c), (d) 0—2.5 T范围内, 50—300 K时Fe00和Fe02的测量MR(MRm)随磁场的变化曲线; (e) 50 K时Fe00和xFe/BST/环氧薄膜热电磁薄膜(Fe0x, x = 1, 2, 3, 4)的MRm随磁场的变化曲线. MR-($ {\text{MR}}_{{\text{Fe0}}x}^{\text{m}} - {\text{MR}}_{{\text{Fe0}}x}^{+}$)和两种MR的拟合曲线分别显示在图(e)的下半部分, 并用虚线和颜色标注

    Fig. 5.  Magnetoresistance characteristic of xFe/BST/epoxy thermoelectromagnetic films: (a), (b) The MR dependence of the included angle θ between the magnetic field H and the out-plane direction of (a) Fe00 and (b) Fe02 in the range of 1.0–2.5 T at 50 K; (c), (d) the magnetic field dependences of measured MR (MRm) of (c) Fe00 and (d) Fe02 at 50–300 K in the range of 0–2.5 T; (e) the magnetic field dependences of MRm of Fe00 and xFe/BST/epoxy flexible films (Fe0x, x = 1, 2, 3, 4) at 50 K. The MR- ($ {\text{MR}}_{{\text{Fe0}}x}^{\text{m}} - {\text{MR}}_{{\text{Fe0}}x}^{+} $) and fitting curves of two kinds of MR are shown in the lower half of panel (e) with the color remarks and the dotted lines, respectively.

    图 6  无MR的BST/环氧树脂热电薄膜的物相组成分析 (a) #0Fe00, #1Fe00, #2Fe00, #3Fe00和#4Fe00的XRD图案, 对应的压力为0, 4, 8, 12和16 MPa; (b) 在27.6°—28.5°范围内XRD谱放大图; (c) 取向因子F随烧结压力的变化曲线

    Fig. 6.  Phase constituents and preferential orientation of BST/epoxy thermoelectricity films ignoring MR: (a) XRD patterns of #0Fe00, #1Fe00, #2Fe00, #3Fe00, and #4Fe00 corresponding the pressure being 0, 4, 8, 12, and 16 MPa; (b) the enlarged XRD patterns in the 2θ range of 27.6°–28.5°; (c) the pressure dependence of the F of (000l) preferential orientation of BST.

    图 7  BST/环氧树脂热电薄膜的$ {\text{MR}}_{{\text{\# }}x}^{+} $随(000l)择优取向度的变化曲线 (a) 50 K时, 不同F的BST/环氧树脂热电薄膜的测量$ {\text{MR}}_{{\text{\# }}x}^ + $随磁场的变化曲线; (b) 50 K时, 不同F的BST/环氧树脂热电薄膜的Δ$ {\text{MR}}_{{\text{\# }}x}^ + $随ΔF#x的变化曲线, 在H = 0.5—2.5 T下, 拟合方程为$ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} = {K_0}{{\Delta }}F_\# ^y{H^2} $, 其中(K0, y)分别是0.5 T为(30.67, 2.075), 1.0 T为(24.92, 2.049), 1.5 T为(19.79, 2.006), 2.0 T为(16.54, 1.983)和2.5 T为(13.79, 1.937); (c)拟合方程为$ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} = {K_0}{{\Delta }}F_\# ^2{H^2} $, 其中K0是常数

    Fig. 7.  The $ {\text{MR}}_{{\text{\# }}x}^{+} $ dependences of the (000l) preferential orientation F#x of BST in BST/epoxy thermoelectricity films: (a) The variation of $ {\text{MR}}_{{\text{\# }}x}^ + $ with the magnetic field at 50 K in the range of 0–2.5 T; (b) the fitting correlation between ΔF# and $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ at H = 0.25–2.5 T, which is expressed as $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} = {K_0}{{\Delta }}F_\# ^y{H^2} $, where (K0, y) is (34.29, 2.129) for 0.5 T, (24.46, 2.021) for 1.0 T, (14.27, 1.902) for 1.5 T, (19.480, 2.063) for 2.0 T, and (16.12, 2.013) for 2.50 T; (c) $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} = {K_0}{{\Delta }}F_\# ^2{H^2} $, where K0 is constant.

    表 1  xFe/BST/环氧树脂热电磁薄膜的F, ΔF, MRm, MR和MR+

    Table 1.  Values of F, ΔF, MRm, MR, and MR+ of xFe/BST/epoxy thermoelectromagnetic films.

    No.FΔF0.5 T1.0 T1.5 T2.0 T2.5 T
    MRmMR+MRMRmMR+MRMRmMR+MRMRmMR+MRMRmMR+MR
    Fe000.260.000.850.850.002.362.360.004.874.870.007.707.700.0011.5111.510.00
    Fe010.310.050.300.86–0.571.072.42–1.342.294.98–2.693.867.87–4.015.7011.75–6.05
    Fe020.410.150.441.00–0.561.412.87–1.502.845.86–3.024.669.24–4.576.7813.67–6.90
    Fe030.380.120.730.94–0.211.962.69–0.733.615.50–1.905.638.68–3.067.9312.89–4.96
    Fe040.360.100.800.92–0.112.082.59–0.514.305.31–1.017.198.38–1.1910.4712.47–2.00
    下载: 导出CSV

    表 2  不同样品300 K时⊥H方向的实测磁性能参数

    Table 2.  Magnetic properties of the ⊥H of the different samples at 300 K.

    Samples x Ms/(emu·g–1) Hk/Oe Keff/(105 erg·g–1) ΔE/(104 erg·g–1) Hc/Oe Mr/(emu·g–1)
    Fe01 0.1% 107.76 9703.48 5.23 5.94 123.65 5.42
    Fe02 0.2% 122.17 14456.38 8.83 8.98 93.37 4.84
    Fe03 0.3% 95.80 10700.42 5.13 7.31 78.80 1.09
    Fe04 0.4% 95.12 10144.43 4.82 6.23 117.48 4.14
    下载: 导出CSV

    表 3  BST/环氧树脂热电薄膜的F#, ΔF#, $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $和K0的值

    Table 3.  Values of F#, ΔF#, $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $, and K0 of BST/epoxy thermoelectricity films.

    Sample F# ΔF# 0.5 T 1.0 T 1.5 T 2.0 T 2.5 T
    $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0 $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0 $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0 $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0 $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0
    #0Fe00 0.26 0.00 0.00 26.99 0.00 22.91 0.00 19.59 0.00 17.04 0.00 15.35
    #1Fe00 0.34 0.08 0.04 26.99 0.11 22.91 0.31 19.59 0.44 17.04 0.63 15.35
    #2Fe00 0.37 0.11 0.07 26.99 0.28 22.91 0.49 19.59 0.88 17.04 1.21 15.35
    #3Fe00 0.42 0.16 0.18 26.99 0.60 22.91 1.15 19.59 1.69 17.04 2.48 15.35
    #4Fe00 0.46 0.20 0.28 26.99 0.95 22.91 1.83 19.59 2.85 17.04 3.96 15.35
    下载: 导出CSV

    表 4  xFe/BST/环氧树脂热电磁薄膜在不同H中的K1, K2, K3, $ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $和$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $值

    Table 4.  Values of K1, K2, K3, $ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $, and $ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $ of xFe/BST/epoxy thermoelectromagnetic films in different H

    No.K1K2K30.5 T1.0 T1.5 T2.0 T2.5 T
    $ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $
    Fe000.000.000.000.000.000.000.000.000.000.000.000.000.00
    Fe0156.300.120.52–0.20–0.37–0.82–0.52–2.06–0.64–3.27–0.74–5.23–0.82
    Fe0236.770.170.45–0.24–0.32–1.02–0.47–2.47–0.55–3.94–0.64–6.18–0.71
    Fe0319.100.200.23–0.05–0.16–0.50–0.23–1.61–0.28–2.73–0.33–4.60–0.36
    Fe046.380.220.17–0.00–0.12–0.34–0.17–0.81–0.21–0.95–0.24–1.73–0.27
    下载: 导出CSV
  • [1]

    Wang L M, Zhang Z M, Liu Y C, Wang B R, Fang L, Qiu J J, Zhang K, Wang S R 2018 Nat. Commun. 9 3817Google Scholar

    [2]

    Yang Q Y, Yang S Q, Qiu P F, Peng L M, Wei T R, Zhang Z, Shi X, Chen L D 2022 Science 377 854Google Scholar

    [3]

    He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [4]

    Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger-Sittner C, Stöger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q, Bauer E 2019 Nature 576 85Google Scholar

    [5]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J Q, Zhao L D 2021 Science 373 556Google Scholar

    [6]

    Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y, He J Q 2022 Science 377 208Google Scholar

    [7]

    Chang C, Wu M H, He D Q, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360 778Google Scholar

    [8]

    Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y, Shi J 2017 Nature 549 247Google Scholar

    [9]

    Zhao W Y, Liu Z Y, Wei P, Zhang Q J, Zhu W T, Su X L, Tang X F, Yang J H, Liu Y, Shi J, Chao Y M, Lin S Q, Pei Y Z 2017 Nat. Nanotechnol. 12 55Google Scholar

    [10]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [11]

    Ma S F, Li C C, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Sun F H, Zhao W Y, Zhang Q J 2021 Sci. China Mater. 64 2835Google Scholar

    [12]

    Li C C, Ma S F, Wei P, Zhu W T, Nie X L, Sang X H, Sun Z, Zhang Q J, Zhao W Y 2020 Energy Environ. Sci. 13 535Google Scholar

    [13]

    Li C C, Ma S F, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Zhao W Y, Zhang Q J 2021 Mater. Today Phys. 19 100409Google Scholar

    [14]

    Xing L, Cui W, Sang X H, Hu F, Wei P, Zhu W T, Nie X L, Zhang Q J, Zhao W Y 2021 J. Materiomics. 7 998Google Scholar

    [15]

    Li C C, Zhao W Y, Zhang Q J 2022 Sci. Bull. 67 891Google Scholar

    [16]

    Zhao Y, Nie X L, Sun C L, Chen Y F, Ke S Q, Li C, Zhu W T, Sang X H, Zhao W Y, Zhang Q J 2021 ACS Appl. Mater. Interfaces 13 58746Google Scholar

    [17]

    Chen Y F, Nie X L, Sun C L, Ke S Q, Xu W J, Zhao Y, Zhu W T, Zhao W Y, Zhang Q J 2022 Adv. Funct. Mater. 32 2111373Google Scholar

    [18]

    Boona S R, Vandaele K, Boona I N, McComb D W, Heremans J P 2016 Nat. Commun. 7 13714Google Scholar

    [19]

    Uchida K I 2022 Nat. Mater. 21 136Google Scholar

    [20]

    Sakai A, Minami S, Koretsune T, Chen T T, Higo T, Wang Y, Nomoto T, Hirayama M, Miwa S, Nishio-Hamane D, Ishii F, Arita R, Nakatsuji S 2020 Nature 581 53Google Scholar

    [21]

    Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y, Felser C 2022 Nat. Mater. 21 203Google Scholar

    [22]

    Chen T T, Minami S, Sakai A, Wang Y, Feng Z, Nomoto T, Hirayama M, Ishii R, Koretsune T, Arita R, Nakatsuji S 2022 Sci. Adv. 8 eabk1480Google Scholar

    [23]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar

    [24]

    Zhao L, Deng H, Korzhovska I, Chen Z, Konczykowski M, Hruban A, Oganesyan V, Krusinelbaum L 2014 Nat. Mater. 13 580Google Scholar

    [25]

    Pippard A B 1989 Magnetoresistance in Metals (New York: Cambridge University Press) pp23–24

    [26]

    Mu X, Zhou H Y, He D Q, Zhao W Y, Wei P, Zhu W T, Nie X L, Liu H J, Zhang Q J 2017 Nano Energy 33 55Google Scholar

    [27]

    Khosla R P, Fischer J R 1970 Phys. Rev. B 2 4084Google Scholar

    [28]

    Kawabata A 1980 Solid State Commun. 34 431Google Scholar

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控. 物理学报, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 祝鑫强, 王剑, 朱璨, 罗丰, 陈树权, 徐佳辉, 徐峰, 王嘉赋, 张艳, 孙志刚. Co3Sn2S2单晶的磁性和电-热输运性能. 物理学报, 2023, 72(17): 177102. doi: 10.7498/aps.72.20230621
    [3] 樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏. 二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质. 物理学报, 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [4] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [6] 杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛. 面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析. 物理学报, 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [7] 何斌, 何雄, 刘国强, 朱璨, 王嘉赋, 孙志刚. SnSe2的忆阻及磁阻效应. 物理学报, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [8] 卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民. 氮化铁薄膜晶相合成热分析及其磁性. 物理学报, 2019, 68(11): 118101. doi: 10.7498/aps.68.20182195
    [9] 许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟. 铁基合金薄带多次等温回火特性的研究. 物理学报, 2019, 68(13): 137501. doi: 10.7498/aps.68.20190017
    [10] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [11] 丁斌峰, 相凤华, 王立明, 王洪涛. He+辐照对Ga0.94Mn0.06As薄膜铁磁性的改善. 物理学报, 2012, 61(4): 046105. doi: 10.7498/aps.61.046105
    [12] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [13] 张辉, 曾德长. Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应. 物理学报, 2010, 59(4): 2808-2814. doi: 10.7498/aps.59.2808
    [14] 王敬平, 孟 健. 磁场下合成Fe3O4粉体的隧道磁阻. 物理学报, 2008, 57(2): 1197-1201. doi: 10.7498/aps.57.1197
    [15] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [16] 聂 颖, 隋 郁, 宋秀丹, 王先杰, 程金光, 千正男, 苏文辉. 成型压力对CrO2低温输运性质的影响. 物理学报, 2006, 55(6): 3038-3042. doi: 10.7498/aps.55.3038
    [17] 吴 坚, 张世远. Ag掺杂La-K-Mn-O非均匀多晶体系的电磁性质. 物理学报, 2006, 55(9): 4893-4900. doi: 10.7498/aps.55.4893
    [18] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [19] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究. 物理学报, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [20] 郭忠诚, 郑萍, 王楠林, 陈兆甲, Y. MAENO, Z. Q. MAO. Sr2RuO4正常态的c方向的磁阻的研究. 物理学报, 2001, 50(9): 1824-1828. doi: 10.7498/aps.50.1824
计量
  • 文章访问数:  911
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 修回日期:  2024-09-24
  • 上网日期:  2024-10-10
  • 刊出日期:  2024-11-20

/

返回文章
返回