搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜

柯少秋 叶先峰 张昊俊 聂晓蕾 陈天天 刘承姗 朱婉婷 魏平 赵文俞

引用本文:
Citation:

正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜

柯少秋, 叶先峰, 张昊俊, 聂晓蕾, 陈天天, 刘承姗, 朱婉婷, 魏平, 赵文俞

Coexistence of positive and negative magnetoresistance in xFe/Bi0.5Sb1.5Te3 thermoelectromagnetic films

Shaoqiu Ke, Xianfeng Ye, Haojun Zhang, Xiaolei Nie, Tiantian Chen, Chengshan Liu, Wanting Zhu, Ping Wei, Wenyu Zhao
PDF
导出引用
  • 具有优异电输运性能的热电薄膜是发展高效面内散热技术的关键材料,但是过低的电输运性能是制约其应用的重要难题。热电磁耦合新效应是近年来发展的一种优化综合热电性能的新方法。为了探索热电磁耦合新效应对热电薄膜电输运性能的影响机制,本研究发展了一种球磨分散-丝网印刷-热压固化一体化成型的方法,成功制备了一系列Fe纳米粒子作为第二相的xFe/BST/环氧树脂热电磁薄膜,并重点研究了其热电磁耦合作用及其对电热输运性能的影响规律。研究发现,xFe/Bi0.5Sb1.5Te3 (BST)/环氧树脂热电磁薄膜中存在正、负磁阻共存的现象;BST(000l)择优取向因子与正磁阻(MR+)之间呈正比例关系并增加热电磁薄膜的电导率;源于强铁磁性Fe纳米粒子局部磁矩的自旋相关散射的负磁阻(MR-)会增加Seebeck系数。因此,室温附近Fe/BST/环氧树脂热电磁薄膜的功率因子高达2.87 mW K-2 m-1,与BST/环氧树脂热电薄膜相比,提高了78%。这些结果表明,热电磁薄膜中正、负磁阻的共存不仅可解耦热电材料中电导率与Seebeck系数之间的耦合关系,还可以为磁纳米粒子诱导优异热电转换性能提供新的物理机制。
    Thermoelectric (TE) films with excellent electrical transport property are integral for developing efficient in-plane heat dissipation technology, but low electrical transport property is a challenge that restricts their application. Recently, a thermo-electro-magnetic coupling novel effect is initiated to significantly enhance the comprehensive TE performance. To explore the influence of the above effect on the electron transport property of TE films, we developed an integration preparation method by ball milling dispersion, screen-printing and hot-pressing curing, obtaining a series of xFe/Bi0.5Sb1.5Te3 (BST)/epoxy TE films where Fe nanoparticles severed as the second phase, from which the thermo-electro-magnetic coupling effect generated and the impact on the electrothermal transport performance was studied as a keystone. The results manifested that there was a coexistence of positive and negative magnetoresistance in xFe/BST/epoxy thermoelectromagnetic films; The preferred orientation factor of BST (000l) was positively proportional to the positive magnetoresistance (MR+), resulting in an increase of the conductivity; The spin-dependent scattering of negative magnetoresistance (MR-) derived from the local magnetic moment of strong ferromagnetic Fe nanoparticles boosted the Seebeck coefficient. Hence, the power factor of Fe/BST/epoxy thermoelectromagnetic film near room temperature reaches 2.87 mW K-2 m-1, increased by 78% compared as that of BST/epoxy thermoelectric film. These results indicated that the coexistence of positive and negative magnetoresistance in thermoelectromagnetic films could not only de-couple the coupling relationship between conductivity and Seebeck coefficient in TE materials, but also provide a new physical mechanism for excellent TE conversion performance induced by magnetic nanoparticles.
  • [1]

    Wang L, Zhang Z, Liu Y, Wang B, Fang L, Qiu J, Zhang K, Wang S 2018 Nat. Commun. 9 3817

    [2]

    Yang Q, Yang S, Qiu P, Peng L, Wei T, Zhang Z, Shi X, Chen L 2022 Science 377 854

    [3]

    He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, Zhang J, Dong Z, Deng Y, Luo J, Zhang W, Chen G, 2020 Sci. Adv. 6 eaaz8423

    [4]

    Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger-Sittner C, Stöger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X-Q, Bauer E 2019 Nature 576 85

    [5]

    Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J-F, He J, Zhao L-D 2021 Science 373 556

    [6]

    Jiang B, Wang W, Liu S, Wang Y, Wang C, Chen Y, Xie L, Huang M, He J 2022 Science 377 208

    [7]

    Chang C, Wu M, He D, Pei Y, Wu C-F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J-F, He J, Zhao L-D 2018 Science 360 778

    [8]

    Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y, Shi J 2017 Nature 549 247

    [9]

    Zhao W, Liu Z, Wei P, Zhang Q, Zhu W, Su X, Tang X, Yang J, Liu Y, Shi J, Chao Y, Lin S, Pei Y 2017 Nat. Nanotechnol. 12 55

    [10]

    Ma S, Li C, Wei P, Zhu W, Nie X, Sang X, Zhang Q, Zhao W 2020 J. Mater. Chem. A 8 4816

    [11]

    Ma S, Li C, Cui W, Sang X, Wei P, Zhu W, Nie X, Sun F, Zhao W, Zhang Q 2021 Sci. China Mater. 64 2835

    [12]

    Li C, Ma S, Wei P, Zhu W, Nie X, Sang X, Sun Z, Zhang Q, Zhao W 2020 Energy Environ. Sci. 13 535

    [13]

    Li C, Ma S, Cui W, Sang X, Wei P, Zhu W, Nie X, Zhao W, Zhang Q 2021 Mater. Today Phys. 19 100409

    [14]

    Xing L, Cui W, Sang X, Hu F, Wei P, Zhu W, Nie X, Zhang Q, Zhao W 2021 J. Materiomics. 7 998

    [15]

    Li C, Zhao W, Zhang Q 2022 Sci. Bull. 67 891

    [16]

    Zhao Y, Nie X, Sun C, Chen Y, Ke S, Li C, Zhu W, Sang X, Zhao W, Zhang, Q 2021 ACS Appl. Mater. Interfaces 13 58746

    [17]

    Chen Y, Nie X, Sun C, Ke S, Xu W, Zhao Y, Zhu W, Zhao W, Zhang Q 2022 Adv. Funct. Mater. 32 2111373

    [18]

    Boona S R, Vandaele K, Boona I N, McComb D W, Heremans J P 2016 Nat. Commun. 7 13714

    [19]

    Uchida K-I 2022 Nat. Mater. 21 136

    [20]

    Sakai A, Minami S, Koretsune T, Chen T, Higo T, Wang Y, Nomoto T, Hirayama M, Miwa S, Nishio-Hamane D, Ishii F, Arita R, Nakatsuji S 2020 Nature 581 53

    [21]

    Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y, Felser C 2022 Nat. Mater. 21 203

    [22]

    Chen T, Minami S, Sakai A, Wang Y, Feng Z, Nomoto T, Hirayama M, Ishii R, Koretsune T, Arita R, Nakatsuji S 2022 Sci. Adv. 8 eabk1480

    [23]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113

    [24]

    Zhao L, Deng H, Korzhovska I, Chen Z, Konczykowski M, Hruban A, Oganesyan V, Krusinelbaum L 2014 Nat. Mater. 13 580

    [25]

    Pippard A B 1989 Magnetoresistance in metals (New York: Cambridge University Press) pp23-24

    [26]

    Mu X, Zhou H, He D, Zhao W, Wei P, Zhu W, Nie X, Liu H, Zhang Q 2017 Nano Energy 33 55

    [27]

    Khosla R P, Fischer J R 1970 Phys. Rev. B 2 4084

    [28]

    Kawabata A 1980 Solid State Commun. 34 431

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控. 物理学报, doi: 10.7498/aps.73.20231744
    [2] 祝鑫强, 王剑, 朱璨, 罗丰, 陈树权, 徐佳辉, 徐峰, 王嘉赋, 张艳, 孙志刚. Co3Sn2S2单晶的磁性和电-热输运性能. 物理学报, doi: 10.7498/aps.72.20230621
    [3] 樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏. 二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质. 物理学报, doi: 10.7498/aps.72.20231163
    [4] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, doi: 10.7498/aps.71.20211685
    [5] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, doi: 10.7498/aps.71.20220166
    [6] 杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛. 面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析. 物理学报, doi: 10.7498/aps.70.20202209
    [7] 何斌, 何雄, 刘国强, 朱璨, 王嘉赋, 孙志刚. SnSe2的忆阻及磁阻效应. 物理学报, doi: 10.7498/aps.69.20200160
    [8] 卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民. 氮化铁薄膜晶相合成热分析及其磁性. 物理学报, doi: 10.7498/aps.68.20182195
    [9] 许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟. 铁基合金薄带多次等温回火特性的研究. 物理学报, doi: 10.7498/aps.68.20190017
    [10] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, doi: 10.7498/aps.65.118105
    [11] 丁斌峰, 相凤华, 王立明, 王洪涛. He+辐照对Ga0.94Mn0.06As薄膜铁磁性的改善. 物理学报, doi: 10.7498/aps.61.046105
    [12] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, doi: 10.7498/aps.61.207201
    [13] 张辉, 曾德长. Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应. 物理学报, doi: 10.7498/aps.59.2808
    [14] 王敬平, 孟 健. 磁场下合成Fe3O4粉体的隧道磁阻. 物理学报, doi: 10.7498/aps.57.1197
    [15] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, doi: 10.7498/aps.56.1121
    [16] 聂 颖, 隋 郁, 宋秀丹, 王先杰, 程金光, 千正男, 苏文辉. 成型压力对CrO2低温输运性质的影响. 物理学报, doi: 10.7498/aps.55.3038
    [17] 吴 坚, 张世远. Ag掺杂La-K-Mn-O非均匀多晶体系的电磁性质. 物理学报, doi: 10.7498/aps.55.4893
    [18] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, doi: 10.7498/aps.54.3851
    [19] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究. 物理学报, doi: 10.7498/aps.52.3176
    [20] 郭忠诚, 郑萍, 王楠林, 陈兆甲, Y. MAENO, Z. Q. MAO. Sr2RuO4正常态的c方向的磁阻的研究. 物理学报, doi: 10.7498/aps.50.1824
计量
  • 文章访问数:  99
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-10

/

返回文章
返回