搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇主介电弛豫速率的疏水端与亲水端协同影响

朱键卓 曹佳怡 杨森 张骞 曹笑语 马颖 段相宜 冯士东

引用本文:
Citation:

甲醇主介电弛豫速率的疏水端与亲水端协同影响

朱键卓, 曹佳怡, 杨森, 张骞, 曹笑语, 马颖, 段相宜, 冯士东

The Synergistic Influence of the Hydrophobic and Hydrophilic Ends on the Primary Dielectric Relaxation Rate of Methanol

Zhu JianZhuo, Cao JianYi, Yang Sen, Zhang Qian, Cao XiaoYu, Ma Ying, Duan XiangYi, Feng ShiDong
PDF
导出引用
  • 单羟基醇的主介电弛豫过程通常表现出典型的Debye特征,近年来,影响其速率的因素成为研究的热点。一般认为,醇分子的亲水端(即羟基)在主介电弛豫过程中通过氢键网络发挥主要作用,而疏水端则主要通过“稀释”体系中的羟基浓度,间接影响该过程。本研究通过经典分子动力学模拟系统地探讨了影响甲醇主介电弛豫速率的因素。研究结果表明,甲醇的疏水端不仅在稳固体系氢键网络方面对主介电弛豫过程产生间接影响,甚至还能直接作用于弛豫过程。甲醇的主介电弛豫过程是其亲水端和疏水端协同作用的结果。此外,研究还发现,甲醇的主介电弛豫速率可能并不像著名的“等待-切换”模型所描述的那样,主要受“氢键伙伴”浓度的影响,而是多种因素共同作用的结果。在某些情况下,“氢键伙伴”浓度的影响甚至被其他因素产生的影响所掩盖,成为次要因素。本研究有助于加深对醇类分子弛豫过程及其物理起源的理解。
    The primary dielectric relaxation process of monoalcohols typically exhibits characteristic Debye behavior, and the factors influencing its rate have become a research focus in recent years. It is generally believed that the hydrophilic end (i.e., the hydroxyl group) of alcohol molecules plays a major role in the primary dielectric relaxation process through hydrogen bonding networks, while the hydrophobic end mainly exerts an indirect effect by influencing the formation of intermolecular hydrogen bonds. This study systematically investigates the factors influencing the primary dielectric relaxation process of methanol using molecular dynamics simulations. As the simplest alcohol molecule, studying methanol can provide insights into the common characteristics of monohydroxy alcohols and even alcohols in general. The well-known "wait-and-switch" model currently emphasizes the impact of hydrogen bond partner concentration on the primary dielectric relaxation rate of the system. In this study, we systematically investigated the factors influencing the primary dielectric relaxation rate of methanol by independently adjusting the O-H bond length (doh), the C-O bond length (doc), and the methyl diameter (σmethyl) of methanol molecules, and provided significant extensions to the "wait-and-switch" model:1) By adjusting doh, we found that a stronger total hydrogen bond energy (UHB) in the system enhances the correlation of molecular motion, slowing down the reorientation rate of molecules and, consequently, the primary dielectric relaxation process of the system. 2) By adjusting dco, we discovered that a longer hydrophobic end not only slows down the primary dielectric relaxation process by stabilizing the intermolecular hydrogen bond network but also directly reduces the rate of this process. 3) By adjusting σmethyl, we found that an excessively small σmethyl is detrimental to the stability of the hydrogen bond network, while an excessively large σmethyl hinders the formation of hydrogen bonds. Both cases negatively affect the correlation of molecular motion. The primary dielectric relaxation process of the system is slowest when σmethyl is at a moderate level. It was ultimately found that factors such as UHB and the volume of the correlated motion (VCM), along with the concentration of hydrogen bond partners in the system, collectively form the key elements influencing the primary dielectric relaxation rate of the system. Our results can reasonably explain experimental phenomena that the original "wait-and-switch" model could not account for. This study contributes to a deeper understanding of the relaxation processes of alcohol molecules and their physical origins.
  • [1]

    Rafikul Islam M, Rehan Alam M, Rayhan U, Khan F, Aldossari S A, Mohammad Wabaidur S, Rana S and Anamul Hoque M 2024 J. Mol. Liq. 393 123621

    [2]

    Chen B, Liu K, Wang L, Zhang X, Qu K, Kong Y and Liu M 2022 J. Chem. Eng. Data 67 3414

    [3]

    Jia W, Sutanto I R, Ndiaye M, Keppler J K and van der Goot A J 2022 Food Struct. 33 100274

    [4]

    Moraveji M K, Sajjadi B and Davarnejad R 2011 Chem. Eng. Technol. 34 465

    [5]

    Yang J, Han X-J, Liu D-X, Shi B, Wang P-Y, Xu S-Z, Zhao Y and Zhang X-D 2024 Acta Phys. Sin 73 158401 [杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹 2024 物理学报 73 158401]

    [6]

    Zhao Z-Y, Zhang X-D, Wang F-Y, Jiang Y-J, Du J, Gao H-B, Zhao Y and Liu C-C 2014 Acta Phys. Sin 63 136802 [赵振越, 张晓丹, 王奉友, 姜元建, 杜建, 高海波, 赵颖, 刘彩池 2014 物理学报 63 136802]

    [7]

    Zhao X-Y, Wang L-N, Han H-B and Shang J-Y 2024 Acta Phys. Sin 73 147701 [赵兴宇, 王丽娜, 韩宏博, 尚洁莹 2024 物理学报 73 147701]

    [8]

    Wang L-N, Zhao X-Y, Shang J-Y and Zhou H-W 2023 Acta Phys. Sin 72 037701 [王丽娜, 赵兴宇, 尚洁莹, 周恒为 2023 物理学报 72 037701]

    [9]

    Sato T and Buchner R 2003 J. Chem. Phys. 118 4606

    [10]

    Sato T and Buchner R 2004 J. Phys. Chem. A 108 5007

    [11]

    Sato T and Buchner R 2005 J. Mol. Liq. 117 23

    [12]

    Kaatze U, Behrends R and Pottel R 2002 J. Non-Cryst. Solids. 305 19

    [13]

    Petong P, Pottel R and Kaatze U 1999 J. Phys. Chem. A 103 6114

    [14]

    Cardona J, Sweatman M B and Lue L 2018 J. Phys. Chem. B 122 1505

    [15]

    Li X, Chen Z, Gao Y, Tu W and Wang L-M 2015 Front. Mater. 2 41

    [16]

    Xu D, Feng S, Wang J-Q, Wang L-M and Richert R 2020 J. Phys. Chem. Lett. 11 5792

    [17]

    Patil S, Sun R, Cheng S and Cheng S 2023 Phys. Rev. Lett. 130 098201

    [18]

    Pabst F, Helbling A, Gabriel J, Weigl P and Blochowicz T 2020 Phys. Rev. E 102 010606(R)

    [19]

    Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler E A and Böhmer R 2010 Phys. Rev. Lett. 105 258303

    [20]

    Gabriel J, Pabst F, Helbling A, Böhmer T and Blochowicz T 2018 Phys. Rev. Lett. 121 035501

    [21]

    Koperwas K and Paluch M 2022 Phys. Rev. Lett. 129 025501

    [22]

    Fragiadakis D, Roland C M and Casalini R 2010 J. Chem. Phys. 132 144505

    [23]

    Soszka N, Hachuła B, Tarnacka M, Kaminska E, Pawlus S, Kaminski K and Paluch M 2021 J. Phys. Chem. B 125 2960

    [24]

    Hecksher T 2016 J. Chem. Phys. 144 161103

    [25]

    Jurkiewicz K, Kołodziej S, Hachuła B, Grzybowska K, Musiał M, Grelska J, Bielas R, Talik A, Pawlus S, Kamiński K and Paluch M 2020 J. Mol. Liq. 319 114084

    [26]

    Kalinovskaya O E, Vij J K and Johari G P 2001 J. Phys. Chem. A 105 5061

    [27]

    Zhang N, Li W, Chen C, Zuo J and Weng L 2013 Mol. Phys. 111 939

    [28]

    Zhang N, Shen Z, Chen C, He G and Hao C 2015 J. Mol. Liq. 203 90

    [29]

    Hiejima Y, Kajihara Y, Kohno H and Yao M 2001 J. Phys.: Condens. Matter 13 10307

    [30]

    Stubbs J M, Potoff J J and Siepmann J I 2004 J. Phys. Chem. B 108 17596

    [31]

    Chen B, Potoff J J and Siepmann J I 2001 J. Phys. Chem. B 105 3093

    [32]

    Wu Y, Tepper H L and Voth G A 2006 J. Chem. Phys. 124 024503

    [33]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1-2 19

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [35]

    Nosé S and Klein M L 1983 Mol. Phys. 50 1055

    [36]

    Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089

    [37]

    Carlson S, Brünig F N, Loche P, Bonthuis D J and Netz R R 2020 J. Phys. Chem. A 124 5599

    [38]

    Ono T, Horikawa K, Maeda Y, Ota M, Sato Y and Inomata H 2016 Fluid Phase Equilibr. 420 30

    [39]

    Kalinovskaya O E and Vij J K 2000 J. Chem. Phys. 112 3262

  • [1] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202239
    [2] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200836
    [3] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, doi: 10.7498/aps.69.20200562
    [4] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟. 物理学报, doi: 10.7498/aps.65.170201
    [5] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 物理学报, doi: 10.7498/aps.64.126102
    [6] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟. 物理学报, doi: 10.7498/aps.63.014402
    [7] 成鹏飞, 王辉, 李盛涛. CaCu3Ti4O12陶瓷的介电特性与弛豫机理. 物理学报, doi: 10.7498/aps.62.057701
    [8] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, doi: 10.7498/aps.61.200207
    [9] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究. 物理学报, doi: 10.7498/aps.61.207702
    [10] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.106601
    [11] 陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳. Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究. 物理学报, doi: 10.7498/aps.60.127701
    [12] 刘鹏, 张丹. La诱导(Pb(1-3x/2)Lax)(Zr0.5Sn0.3Ti0.2)O3反铁电介电弛豫研究. 物理学报, doi: 10.7498/aps.60.017701
    [13] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.5687
    [14] 张崇辉, 徐卓, 高俊杰, 王斌科. 等静压下0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3陶瓷的介电性能研究. 物理学报, doi: 10.7498/aps.58.6500
    [15] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, doi: 10.7498/aps.57.5833
    [16] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究. 物理学报, doi: 10.7498/aps.55.1346
    [17] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4313
    [18] 孔祥蕾, 罗晓琳, 牛冬梅, 张先燚, 阚瑞峰, 李海洋. 纳秒强激光场中甲醇光电离产生高价离子的研究. 物理学报, doi: 10.7498/aps.53.1340
    [19] 董正高, 沈明荣, 徐闰, 甘肇强, 葛水兵. 氧气氛低温退火Pt/Ba0.8Sr0.2TiO3Pt引起的低频介电弛豫效应. 物理学报, doi: 10.7498/aps.51.2896
    [20] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, doi: 10.7498/aps.51.1634
计量
  • 文章访问数:  65
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-16

/

返回文章
返回