搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究

金冬月 曹路明 王佑 贾晓雪 潘永安 周钰鑫 雷鑫 刘圆圆 杨滢齐 张万荣

引用本文:
Citation:

基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究

金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣

Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application

Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong
PDF
HTML
导出引用
  • 自旋转移矩辅助电压调控磁各向异性磁隧道结(STT辅助VCMA-MTJ)作为非易失性全加器(NV-FA)中的核心部件, 具有切换速度快、功耗低, 稳定性好等优点, 将在物联网、人工智能等领域具有良好的发展前景. 然而随着磁隧道结(MTJ)尺寸的不断缩小以及芯片集成度的不断提高, 工艺偏差对MTJ及NV-FA电路性能的影响将变得越来越显著. 本文基于STT辅助VCMA-MTJ磁化动力学, 在充分考虑薄膜生长工艺偏差以及刻蚀工艺偏差影响的情况下, 建立了更为精确的STT辅助VCMA-MTJ电学模型, 研究了上述两种工艺偏差对MTJ及NV-FA电路性能的影响. 结果表明, 当自由层厚度偏差γtf ≥ 6%或氧化层厚度偏差γtox ≥ 0.7%时, MTJ将无法实现状态切换; 当隧穿磁阻率偏差β增大到30%时, 读取裕度SM将下降高达17.6%. 对于NV-FA电路, 通过增大电压Vb1以及写‘0’时增大电压Vb2或写‘1’时减小Vb2, 可有效降低非易失性加数写入错误率; 通过增大逻辑运算驱动电压Vdd, 可有效降低逻辑运算结果输出错误率.
    As one of the key components in the non-volatile full adder (NV-FA), spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction (STT assisted VCMA-MTJ) will possess superior development prospects in internet of things, artificial intelligence and other fields due to its fast switching speed, low power consumption and good stability. However, with the downscaling of magnetic tunnel junction (MTJ) and the improvement of chip integration, the effects of process deviation on the performances of MTJ device as well as NV-FA circuit become more and more important. Based on the magnetization dynamics of STT assisted VCMA-MTJ, a new electrical model of STT assisted VCMA-MTJ, in which the effects of the film growth variation and the etching variation are taken into account, is established to study the effects of the above deviations on the performances of MTJ device and NV-FA circuit. It is shown that the MTJ state fails to be switched under the free layer thickness deviation γtf ≥ 6% or the oxide layer thickness deviation γtox ≥ 0.7%. The sensing margin (SM) is reduced by 17.5% as the tunnel magnetoresistance ratio deviation β increases to 30%. The writing error rate can be effectively reduced by increasing Vb1, and increasing Vb2 when writing ‘0’ or reducing Vb2 when writing ‘1’ in the NV-FA circuit. The output error rate can also be effectively reduced by increasing the driving voltage of logical operation Vdd.
      通信作者: 张万荣, wrzhang@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61006059, 61774012, 61901010)、北京市自然科学基金(批准号: 4143059, 4192014, 4204092)、北京市教委科技发展计划项目(批准号: KM201710005027)、北京市博士后科学基金(批准号: 2015ZZ-11)、中国博士后科学基金(批准号: 2015M580951, 2019M650404)和北京市未来芯片技术高精尖创新中心科研基金(批准号: KYJJ2016008)资助的课题.
      Corresponding author: Zhang Wan-Rong, wrzhang@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006059, 61774012, 61901010), Natural Science Foundation of Beijing, China (Grant Nos. 4143059, 4192014, 4204092), Beijing Municipal Education Committee Project, China (Grant No. KM201710005027), Postdoctoral Science Foundation of Beijing, China (Grant No. 2015ZZ-11), China Postdoctoral Science Foundation (Grant Nos. 2015M580951, 2019M650404), and Beijing Future Chip Technology High-tech Innovation Center Scientific Research Fund, China (Grant No. KYJJ2016008).
    [1]

    Verma G 2020 Global Conference on Wireless and Optical Technologies (GCWOT) Malaga, Spain, October 6–8, 2020 p1

    [2]

    Deng E Y, Zhang Y, Klein J O, Ravelsona D, Chappert C, Zhao W S 2013 IEEE Trans. Magn. 49 4982Google Scholar

    [3]

    Cai H, Jiang H L, Han M L, Wang Z H, Wang Y, Yang J, Han J, Liu L B, Zhao W S 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) Miami, USA, July 1, 2019 p111

    [4]

    Shreya S, Jain A, Kaushik B K 2020 Microelectron. J. 109 104943Google Scholar

    [5]

    Roohi A, Zand R, Fan D, DeMara R F 2017 IEEE Trans. Comput. AD. D. 36 2134Google Scholar

    [6]

    Sharmin S, Jaiswal A, Roy K 2016 IEEE Trans. Electron. Devices 63 3493Google Scholar

    [7]

    Wang Y, Cai H, Naviner L, Zhang Y, Zhao X X, Deng E Y, Klein J O, Zhao W S 2016 IEEE Trans. Electron. Devices 63 1762Google Scholar

    [8]

    Long M Z, Zeng L, Gao T Q, Zhang D M, Qin X W, Zhang Y G, Zhao W S 2018 IEEE Trans. Nanotechnol. 17 492Google Scholar

    [9]

    Kanai S, Nakatani Y, Yamanouchi M, Ikeda S, Sato H, Matsukura F, Ohno H 2014 Appl. Phys. Lett. 104 212406Google Scholar

    [10]

    Zarei A, Safaei F 2018 Microelectron. J. 82 62Google Scholar

    [11]

    Wang Y, Cai H, Naviner L, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [12]

    Meng H, Lum W H, Sbiaa R, Lua S Y H, Tan H K 2011 J. Appl. Phys. 110 033904Google Scholar

    [13]

    Chun S W, Kim D, Kwon J 2012 J. Appl. Phys. 111 07C722Google Scholar

    [14]

    Jeong J, Endoh T 2017 Jpn. J. Appl. Phys. 56 04CE09Google Scholar

    [15]

    Ji M H, Pan L, Hu Y G, Pan M C, Yang L, Peng J P, Qiu W C, Hu J F, Zhang Q, Li P S 2019 AIP Adv. 9 085317Google Scholar

    [16]

    Amiri P K, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Grezes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q M, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [17]

    Liu Y W, Zhang Z Z 2013 Sci. China Phys. Mech. 56 184Google Scholar

    [18]

    Niranjan M K, Duan C G, Jaswal S S, Tsymbal E V 2010 Appl. Phys. Lett. 96 222504Google Scholar

    [19]

    Zhao W S, Zhao X X, Zhang B Y, Cao K H, Wang L Z, Kang W, Shi Q, Wang M X, Zhang Y, Wang Y, Peng S Z, Klein J O, Naviner L, Ravelosona D 2016 Materals 9 41Google Scholar

    [20]

    Kang W, Ran Y, Zhang Y G, Lv W F, Zhao W S 2017 IEEE Trans. Nanotechnol. 16 387Google Scholar

    [21]

    Brinkman W F, Dynes R C, Rowell J M 1970 J. Appl. Phys. 41 1915Google Scholar

    [22]

    金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟 2020 物理学报 69 198502Google Scholar

    Jin D Y, Chen H, Wang Y, Zhang W R, Na W C, Guo B, Wu L, Yang S M, Sun S 2020 Acta Phys. Sin. 69 198502Google Scholar

    [23]

    Gajek M, Nowak J J, Sun J Z, Trouilloud P L, O’Sullivan E J, Abraham D W, Gaidis M C, Hu G, Brown S, Zhu Y, Robertazzi R P, Gallagher W J 2012 Appl. Phys. Lett. 100 132408Google Scholar

    [24]

    Chen E, Schwarz B, Choi C J, Kula W, Wolfman J, Ounadjela K, Geha S 2003 J. Appl. Phys. 93 8379Google Scholar

    [25]

    Wu L Z, Taouil M, Rao S, Marinissen E J, Hamdioui S 2018 IEEE International Test Conference (ITC) Phoenix, USA, October 29–November 1, 2018 p18412682

    [26]

    Sugiura K, Takahashi S, Amano M, Kajiyama T, Iwayama M, Asao Y, Shimomura N, Kishi T, Ikegawa S, Yoda H, Nitayama A 2009 Jpn. J. Appl. Phys. 48 08HD02Google Scholar

    [27]

    Kinoshita K, Utsumi H, Suemitsu K, Hada H, Sugibayashi T 2010 Jpn. J. Appl. Phys. 49 08JB02Google Scholar

    [28]

    Kinoshita K, Yamamoto T, Honjo H, Kasai N, Ikeda S, Ohno H 2012 Jpn. J. Appl. Phys. 51 08HA01Google Scholar

    [29]

    Deng E Y, Wang Y, Wang Z H, Klein J O, Dieny B, Prenat G, Zhao W S 2015 Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures Boston, USA, July 8–10, 2015 p27

    [30]

    Li J, Augustine C, Salahuddin S, Roy K 2008 Proceedings of the 45th annual Design Automation Conference New York, USA, June 8–13, 2008 p278

    [31]

    Cai H, Wang Y, Naviner L, Zhao W S 2017 IEEE T. Circuits-I 64 847Google Scholar

  • 图 1  STT辅助VCMA-MTJ结构示意图

    Fig. 1.  Schematic structure of the STT assisted VCMA-MTJ device.

    图 2  VCMA效应示意图

    Fig. 2.  Schematic illustration of the VCMA effect.

    图 3  P态切换到AP态时STT辅助VCMA-MTJ磁化动力学示意图

    Fig. 3.  Illustration of magnetization dynamics when STT assisted VCMA-MTJ switches from P state to AP state.

    图 4  AP态切换到P态时STT辅助VCMA-MTJ磁化动力学示意图

    Fig. 4.  Illustration of magnetization dynamics when STT assisted VCMA-MTJ switches from AP state to P state.

    图 5  Vb1, Vb2γtf对STT辅助VCMA-MTJ状态切换的影响, 其中插图是Vb的设置

    Fig. 5.  Effects of Vb1, Vb2 and γtf on the state switching of STT assisted VCMA-MTJ, in which the inset represents the setting of Vb.

    图 6  γtox对STT辅助VCMA-MTJ状态切换的影响, 其中插图是Vb的设置

    Fig. 6.  Effect of γtox on the state switching of STT assisted VCMA-MTJ, in which the inset represents the setting of Vb.

    图 7  不同β下, SM随TMR的变化

    Fig. 7.  SM versus TMR with different β.

    图 8  NV-FA电路

    Fig. 8.  Circuit of NV-FA.

    图 9  NV-FA写电路仿真波形

    Fig. 9.  Simulation waveform of the writing circuit of NV-FA.

    图 10  NV-FA仿真波形

    Fig. 10.  Simulation waveform of NV-FA.

    图 11  STT辅助VCMA-MTJ写电路的蒙特卡罗仿真波形 (a)写‘0’; (b)写‘1’

    Fig. 11.  Monte Carlo simulation waveform of the writing circuit of STT assisted VCMA-MTJ: (a) Writing ‘0’; (b) writing ‘1’.

    图 12  写入错误率随Vb1Vb2的变化 (a)写‘0’的错误率; (b)写‘1’的错误率

    Fig. 12.  Writing error rate versus Vb1 and Vb2: (a) Writing ‘0’; (b) writing ‘1’.

    图 13  NV-FA的蒙特卡罗仿真波形, 其中n = 100, 3σ/μ = 0.03, Vdd = 1.0 V

    Fig. 13.  Monte Carlo simulation waveform of NV-FA with n = 100, 3σ/μ = 0.03, Vdd = 1.0 V.

    图 14  不同信号下错误率随Vdd的变化 (a) Sum错误率; (b) Co错误率

    Fig. 14.  Error rate versus Vdd under different signals: (a) Error rate of Sum; (b) error rate of Co.

    图 15  两款NV-FA输出错误率随Vdd变化情况的比较

    Fig. 15.  The sensing error rate versus Vdd in two types of NV-FA.

    表 1  STT辅助VCMA-MTJ电学模型部分参数列表

    Table 1.  Partial parameters of the STT assisted VCMA-MTJ model.

    参数符号
    自由层厚度标准值tf1.1 nm
    氧化层厚度标准值tox1.4 nm
    MTJ横截面直径d50 nm
    Gilbert阻尼系数α0.05
    STT极化因子P0.58
    饱和磁化强度Ms0.625 × 106 A/m
    垂直磁各向异性系数Ki0.32 mJ/m2
    VCMA系数ξ60 fJ/(V·m)
    氧化层势垒高度$ \bar \varphi $0.4 eV
    隧穿磁阻率标准值TMR100%
    外磁场在x轴分量Hx31830 A/m
    x, y轴退磁因子Nx, y0.0168
    z轴退磁因子Nz0.966
    旋磁比γ2.21 × 105 m/(A·s)
    拟合系数F11.2727 (m·Ω·eV1/2)–1
    拟合因子Ce1.025 (m·eV1/2)–1
    下载: 导出CSV
  • [1]

    Verma G 2020 Global Conference on Wireless and Optical Technologies (GCWOT) Malaga, Spain, October 6–8, 2020 p1

    [2]

    Deng E Y, Zhang Y, Klein J O, Ravelsona D, Chappert C, Zhao W S 2013 IEEE Trans. Magn. 49 4982Google Scholar

    [3]

    Cai H, Jiang H L, Han M L, Wang Z H, Wang Y, Yang J, Han J, Liu L B, Zhao W S 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) Miami, USA, July 1, 2019 p111

    [4]

    Shreya S, Jain A, Kaushik B K 2020 Microelectron. J. 109 104943Google Scholar

    [5]

    Roohi A, Zand R, Fan D, DeMara R F 2017 IEEE Trans. Comput. AD. D. 36 2134Google Scholar

    [6]

    Sharmin S, Jaiswal A, Roy K 2016 IEEE Trans. Electron. Devices 63 3493Google Scholar

    [7]

    Wang Y, Cai H, Naviner L, Zhang Y, Zhao X X, Deng E Y, Klein J O, Zhao W S 2016 IEEE Trans. Electron. Devices 63 1762Google Scholar

    [8]

    Long M Z, Zeng L, Gao T Q, Zhang D M, Qin X W, Zhang Y G, Zhao W S 2018 IEEE Trans. Nanotechnol. 17 492Google Scholar

    [9]

    Kanai S, Nakatani Y, Yamanouchi M, Ikeda S, Sato H, Matsukura F, Ohno H 2014 Appl. Phys. Lett. 104 212406Google Scholar

    [10]

    Zarei A, Safaei F 2018 Microelectron. J. 82 62Google Scholar

    [11]

    Wang Y, Cai H, Naviner L, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [12]

    Meng H, Lum W H, Sbiaa R, Lua S Y H, Tan H K 2011 J. Appl. Phys. 110 033904Google Scholar

    [13]

    Chun S W, Kim D, Kwon J 2012 J. Appl. Phys. 111 07C722Google Scholar

    [14]

    Jeong J, Endoh T 2017 Jpn. J. Appl. Phys. 56 04CE09Google Scholar

    [15]

    Ji M H, Pan L, Hu Y G, Pan M C, Yang L, Peng J P, Qiu W C, Hu J F, Zhang Q, Li P S 2019 AIP Adv. 9 085317Google Scholar

    [16]

    Amiri P K, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Grezes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q M, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [17]

    Liu Y W, Zhang Z Z 2013 Sci. China Phys. Mech. 56 184Google Scholar

    [18]

    Niranjan M K, Duan C G, Jaswal S S, Tsymbal E V 2010 Appl. Phys. Lett. 96 222504Google Scholar

    [19]

    Zhao W S, Zhao X X, Zhang B Y, Cao K H, Wang L Z, Kang W, Shi Q, Wang M X, Zhang Y, Wang Y, Peng S Z, Klein J O, Naviner L, Ravelosona D 2016 Materals 9 41Google Scholar

    [20]

    Kang W, Ran Y, Zhang Y G, Lv W F, Zhao W S 2017 IEEE Trans. Nanotechnol. 16 387Google Scholar

    [21]

    Brinkman W F, Dynes R C, Rowell J M 1970 J. Appl. Phys. 41 1915Google Scholar

    [22]

    金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟 2020 物理学报 69 198502Google Scholar

    Jin D Y, Chen H, Wang Y, Zhang W R, Na W C, Guo B, Wu L, Yang S M, Sun S 2020 Acta Phys. Sin. 69 198502Google Scholar

    [23]

    Gajek M, Nowak J J, Sun J Z, Trouilloud P L, O’Sullivan E J, Abraham D W, Gaidis M C, Hu G, Brown S, Zhu Y, Robertazzi R P, Gallagher W J 2012 Appl. Phys. Lett. 100 132408Google Scholar

    [24]

    Chen E, Schwarz B, Choi C J, Kula W, Wolfman J, Ounadjela K, Geha S 2003 J. Appl. Phys. 93 8379Google Scholar

    [25]

    Wu L Z, Taouil M, Rao S, Marinissen E J, Hamdioui S 2018 IEEE International Test Conference (ITC) Phoenix, USA, October 29–November 1, 2018 p18412682

    [26]

    Sugiura K, Takahashi S, Amano M, Kajiyama T, Iwayama M, Asao Y, Shimomura N, Kishi T, Ikegawa S, Yoda H, Nitayama A 2009 Jpn. J. Appl. Phys. 48 08HD02Google Scholar

    [27]

    Kinoshita K, Utsumi H, Suemitsu K, Hada H, Sugibayashi T 2010 Jpn. J. Appl. Phys. 49 08JB02Google Scholar

    [28]

    Kinoshita K, Yamamoto T, Honjo H, Kasai N, Ikeda S, Ohno H 2012 Jpn. J. Appl. Phys. 51 08HA01Google Scholar

    [29]

    Deng E Y, Wang Y, Wang Z H, Klein J O, Dieny B, Prenat G, Zhao W S 2015 Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures Boston, USA, July 8–10, 2015 p27

    [30]

    Li J, Augustine C, Salahuddin S, Roy K 2008 Proceedings of the 45th annual Design Automation Conference New York, USA, June 8–13, 2008 p278

    [31]

    Cai H, Wang Y, Naviner L, Zhao W S 2017 IEEE T. Circuits-I 64 847Google Scholar

  • [1] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [2] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析. 物理学报, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [3] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [4] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [5] 金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟. 基于工艺偏差的电压调控磁各向异性磁隧道结电学模型及其在读写电路中的应用. 物理学报, 2020, 69(19): 198502. doi: 10.7498/aps.69.20200228
    [6] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [7] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [8] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟. 物理学报, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [9] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动. 物理学报, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [10] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [11] 汤华莲, 许蓓蕾, 庄奕琪, 张丽, 李聪. 工艺偏差下PMOS器件的负偏置温度不稳定效应分布特性. 物理学报, 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [12] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [13] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究. 物理学报, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [14] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [15] 闫静, 祁先进, 王寅岗. 退火对IrMn基磁隧道结多层膜热稳定性的影响. 物理学报, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [16] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [17] 王 勇, 张 泽, 曾中明, 韩秀峰. 电子全息对磁隧道结势垒层的研究. 物理学报, 2006, 55(3): 1148-1152. doi: 10.7498/aps.55.1148
    [18] 董正超. 铁磁-d波超导结中的粗糙界面散射和自旋反转效应对隧道谱的影响. 物理学报, 2001, 50(9): 1779-1782. doi: 10.7498/aps.50.1779
    [19] 陈慧余, 罗有泉. Ni-FeCr多层膜的磁各向异性和自旋波谱. 物理学报, 1991, 40(8): 1364-1370. doi: 10.7498/aps.40.1364
    [20] 邝宇平, 翁世浚. 立方晶体铁磁各向异性的自旋波理论. 物理学报, 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
计量
  • 文章访问数:  2925
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 修回日期:  2022-01-09
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回