搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于群论的晶格扰动介质纳米孔阵列多重Fano共振机理及演变

陈颖 李美洁 赵蒙 王建坤

引用本文:
Citation:

基于群论的晶格扰动介质纳米孔阵列多重Fano共振机理及演变

陈颖, 李美洁, 赵蒙, 王建坤

Group theory based formation mechanism and evolution of multiple Fano resonances in dielectric nanohole arrays with lattice-perturbed

Chen Ying, Li Mei-Jie, Zhao Meng, Wang Jian-Kun
PDF
HTML
导出引用
  • 基于全介质超构材料独特的电磁属性, 提出了一种晶格扰动介质纳米孔阵列超构表面来激发近红外区域的多重Fano共振. 结合群论深入探究了该超构表面在其原胞为方形晶格构型与方形晶格对称性被破坏两情况下多重Fano共振的形成机理及演变规律. 研究表明, 在方形晶格超构表面中, 外部辐射连续体分别与由正入射平面波直接激发的双重简并模式共振干涉形成双重Fano共振, 且该共振与原胞中是否含孔及孔的形状无关, 在晶格扰动超构表面中, 原本不耦合的非简并模式由正入射平面波激发出来并与外部辐射连续体干涉形成Q值更高的三重Fano共振. 进一步探讨了正入射平面波的xy极化方向对上述五重Fano共振的影响, 结果表明, 双重简并模式Fano共振偏振无关, 三重非简并模式Fano共振偏振依赖. 本文将为利用方形晶格构型的超构表面实现多重Fano共振的激发及演变提供有效的理论参考.
    Based on the electromagnetic properties of all-dielectric optical metamaterial, an all-dielectric metasurface of lattice-perturbed nanohole array is proposed to excite a multiple Fano resonance in the near-infrared region. Combined with the group theory, the formation mechanism and evolution law of multiple Fano resonances in this structure when its unit cell is a square lattice configuration and the square lattice symmetry is broken are explored in depth. The results show that double degenerate mode directly excited by the normal incident plane wave is coupled to vertical free-space radiation continuum to form double Fano resonance when unit cell is symmetrical, while the uncoupled non-degenerate modes excited by the normal incident plane wave is coupled to vertical free-space radiation continuum to form triple Fano resonance with higher Q factor when the symmetry is broken. Numerical simulation is used to explore the influences of x-polarized and y-polarized plane wave on the above Fano resonances, and the results show that the Fano resonance of double degenerate resonance is polarization independent, while the non-degenerate resonance is polarization dependent. The findings in this work can provide an effective theoretical reference for designing other square lattice metasurface to realize the excitation and evolution of multiple Fano resonances.
      通信作者: 陈颖, Chenying@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61201112)、河北省重点研发计划(批准号: 19273901D, 20373301D)、河北省自然科学基金(批准号: F2020203066)、中国博士后基金(批准号: 2018M630279)、河北省博士后择优资助项目(批准号: D2018003028)和河北省高等学校科学技术研究项目(批准号: ZD2018243)资助的课题.
      Corresponding author: Chen Ying, Chenying@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61201112), the Key Research and Development Project of Hebei Province, China (Grant Nos. 19273901D, 20373301D), the Natural Science Foundation of Hebei Province, China (Grant No. F2020203066), the China Postdoctoral Science Foundation (Grant No. 2018M630279), the Post-Doctoral Research Projects in Hebei Province, China (Grant No. D2018003028), the Scientific Research Foundation of the Higher Education Institutions of Hebei Province, China (Grant No. ZD2018243).
    [1]

    鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配 2021 物理学报 70 034204Google Scholar

    Lu L D, Zhu L Q, Zeng Z M, Cui Y P, Zhang D L, Yuan P 2021 Acta Phys. Sin. 70 034204Google Scholar

    [2]

    Tribelsky M I, Miroshnichenko A E 2016 Phys. Rev. A 93 053837Google Scholar

    [3]

    Kong X H, Xiao G B 2016 J. Opt. Soc. Am. A 33 707Google Scholar

    [4]

    Poddubny A N, Rybin M V, Limonov M F, Kivshar Y S 2012 Nat. Commun. 3 914Google Scholar

    [5]

    Rybin M V, Mingaleev S F, Limonov M F, Kivshar Y S 2016 Sci. Rep. 6 20599Google Scholar

    [6]

    Rybin M V, Khanikaev A B, Inoue M, Samusev K B, Steel M J, Yushin G, Limonov M F 2009 Phys. Rev. Lett. 103 023901Google Scholar

    [7]

    Sharac, N, Sharma H, Veysi M, Sanderson R N, Khine M, Capolino F, Ragan R 2016 Nanotechnology 27 105302Google Scholar

    [8]

    Guo M, Huang L R, Liu W B, Ding J F 2021 Opt. Mater. 112 110802Google Scholar

    [9]

    Wang W D, Zheng L, Wang Y L 2020 Opt. Commun. 454 124516Google Scholar

    [10]

    Kong Y, Cao J J, Qian W C, Liu C, Wang S Y 2018 IEEE Photon. J. 10 1943Google Scholar

    [11]

    Zhang Y H, Liang Z Z, Meng D J, Qin Z, Fan Y D, Shi X Y, Smith D R, Hou E Z 2021 Results Phys. 24 104129Google Scholar

    [12]

    Brandl D W, Mirin N A, Nordlander P 2006 J. Phys. Chem. B 110 12302Google Scholar

    [13]

    Hopkins B, Poddubny A N, Miroshnichenko A E, Kivshar Y S 2013 Phys. Rev. A (Coll Park) 88 053819Google Scholar

    [14]

    Forestiere C, Negro L D, Miano G 2013 Phys. Rev. B 88 155411Google Scholar

    [15]

    Gomez D E, Vernon K C, Davis T J 2010 Phys. Rev. B 81 075414Google Scholar

    [16]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [17]

    Chen Q, Wang D, Gao F 2021 Opt. Lett. 46 1209Google Scholar

    [18]

    Ito T, Sakoda K 2001 Phys. Rev. B 64 045117Google Scholar

    [19]

    Crozier K B, Lousse V, Kilic O, Kim S, Fan S, Solgaard O 2006 Phys. Rev. B 73 115126Google Scholar

    [20]

    崔成聪 2020 博士学位论文 (武汉: 华中科技大学)

    Cui C C 2020 Ph. D. Dissertation (Wuhang: Huazhong University of Science and Technology) (in Chinese)

    [21]

    Kilic O, Digonnet M, Kino G, Solgaard O 2008 Opt. Express 16 13090Google Scholar

    [22]

    Nicolaou C, Lau W T, Gad R, Akhavan H, Schilling R, Levi O 2013 Opt. Express 21 31698Google Scholar

    [23]

    Fan S H 2002 Phys. Rev. B 65 235112Google Scholar

    [24]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260Google Scholar

    [25]

    Rajratan B, Atwood L J 2019 Opt. Express 27 282Google Scholar

    [26]

    Lee J, Zhen B, Chua S L, Qiu W J, Joannopoulos J D, Soljacic M, Shapira O 2012 Phys. Rev. Lett. 109 067401Google Scholar

    [27]

    Staude I, Schilling J 2017 Nat. Photonics 11 274Google Scholar

  • 图 1  晶格扰动介质纳米孔阵列超构表面模型表征 (a) 方形晶格原胞俯视图; (b) 晶格扰动原胞俯视图; (c) $ r = 80\;{\text{nm}} $时晶格扰动超构表面示意图

    Fig. 1.  Schematic diagram of dielectric nanohole arrays metasurface with lattice-perturbed: (a) Top view of unit cell with square lattice; (b) top view of unit cell with lattice-perturbed; (c) schematic diagram of metasurface with lattice-perturbed of $ r = 80\;{\text{nm}} $.

    图 2  原胞与模场对称性 (a) 方形晶格(上)与晶格扰动(下)原胞的二维对称示意图; (b) 方形晶格超构表面的第一布里渊区; (c) y极化平面波($ {e_y} $)与x极化平面波($ {e_x} $)的模场对称性; (d) 方形晶格超构表面中6种本征模的对称性(同号区域对称, 异号区域反对称)

    Fig. 2.  Symmetry of unit cell and mode field: (a) Two-dimensional symmetry operation for unit cell with square lattice(above) and lattice-perturbed (below); (b) the first Brillouin zone of square lattice metasurface; (c) symmetry of resonant mode field of $ {e_y} $and $ {e_x} $; (d) symmetry of six eigenmodes in lattice metasurface (areas with the same sign are symmetrical and areas with different signs are antisymmetric).

    图 3  方形晶格超构表面在$ {e_x} $正入射条件下的数值模拟结果 (a) 完整硅板、扇形孔与方孔超构表面的反射光谱对比图; (b), (c) FR1与FR2处的笛卡尔多极分解; (d) FR1(FR2)在xoy截面的归一化磁场(电场)分布$ \left| H \right| $($ \left| E \right| $)及xoz(yoz)截面的归一化电场(磁场)分布$ \left| E \right| $($ \left| H \right| $); (e) 完整硅板与扇形孔超构表面在xoy截面的归一化电磁场分布(以下场图中的白线框均表征结构轮廓); (f), (g) MD1与ED的概念描述图

    Fig. 3.  Numerical simulation of square lattice metasurface under$ {e_x} $: (a) Reflectance spectrum comparison of metasurfaces with complete silicon block, scalloped holes and square holes; (b), (c) cartesian multipole decomposition of FR3, FR4 and FR5; (d) normalized magnetic(electric) field distributionin $ \left| H \right| $ ($ \left| E \right| $) in xoy section and normalized electric(magnetic) field distribution $ \left| E \right| $ ($ \left| H \right| $)in xoz (yoz) sectionof FR1(FR2); (e) normalized electromagnetic field distribution in xoy section of metasurface with complete silicon block, scalloped holes(white boxes in the following field diagrams is structural outline drawing); (f), (g) conceptual description of MD1 and ED.

    图 4  晶格扰动超构表面的反射光谱图与拟合曲线模型 (a) $ {e_x} $$ {e_y} $正入射条件下的反射光谱对比图; (b) $ {e_x} $正入射条件下FR1-FR5的拟合曲线

    Fig. 4.  Reflection spectra and fitting curve model of lattice perturbed metasurface: (a) Comparison of reflectance spectrum under$ {e_x} $and$ {e_y} $; (b) fitting curve of FR1-FR5 under $ {e_x} $.

    图 5  晶格扰动超构表面在$ {e_x} $正入射条件下的近场分析与笛卡尔多极分解 (a)—(i) FR3, FR4与FR5在xoy截面的归一化电场分布$ \left| E \right| $yoz截面的归一化磁场分布$ \left| H \right| $及TD1, TD2与MD2的概念描述图; (j)—(l) FR3, FR4与FR5处的笛卡尔多极分解

    Fig. 5.  Near-field analysis of lattice-perturbed metasurface under $ {e_x} $ and cartesian multipole decomposition: (a)–(i) Normalized electric field distribution $ \left| E \right| $ in xoy section and normalized magnetic field distribution $ \left| H \right| $ in yoz sectionof FR3, FR4 and FR5, and conceptual description of TD1, TD2 and MD2; (j)–(l) cartesian multipole decomposition of FR3, FR4 and FR5.

    图 6  晶格扰动超构表面在$ {e_y} $正入射条件下的近场分布 (a) 共振1(共振2)在xoy截面的归一化磁场(电场)分布$ \left| H \right| $($ \left| E \right| $)及yoz(xoz)截面的归一化电场(磁场)分布$ \left| E \right| $($ \left| H \right| $); (b) 共振1与共振2处的笛卡尔多极分解

    Fig. 6.  Near-field distribution of lattice-perturbed metasurface under $ {e_y} $: (a) Normalized magnetic(electric) field distributionin $ \left| H \right| $ ($ \left| E \right| $) in xoy section and normalized electric(magnetic) field distribution $ \left| E \right| $ ($ \left| H \right| $) in yoz(xoz) sectionof resonance 1(resonance 2); (b) cartesian multipole decomposition of resonance 1 and resonance 2.

    表 1  ${C_{{\text{4v}}}}$点群的不可约表示的特征标表

    Table 1.  Character table of irreducible representations of ${C_{{\text{4v}}}}$ point group.

    $ {C_{{\text{4 v}}}} $E$ 2{C_4} $$ {C_2} $$ 2{\sigma _{\text{v}}} $$ {\text{2}}{\sigma _{\text{d}}} $
    $ {A_1} $11111
    $ {A_2} $111–1–1
    $ {B_1} $1–111–1
    $ {B_2} $1–11–11
    E20–200
    下载: 导出CSV

    表 2  表征Fano共振特性的主要参数值

    Table 2.  Main parameters that characterize the resonant properties of Fano.

    Parameter$ {\omega _{\text{0}}}/e{\text{V}} $$ \Gamma /{\rm{nm}} $FqQ
    $ {\lambda _{\text{1}}}= 1207.13\;{\text{nm}} $1.0272.920.257–1.550413
    $ {\lambda _{\text{2}}}= 1504.39\;{\text{nm}} $0.8246.570.2341.910229
    $ {\lambda _{\text{3}}}= 1074.80\;{\text{nm}} $1.1540.260.2211.5364134
    $ {\lambda _{\text{4}}} = 1093.35\;{\text{nm}} $1.1340.540.2561.1452025
    $ {\lambda _{\text{5}}}= 1577.74\;{\text{nm}} $0.7861.110.2851.4131421
    下载: 导出CSV
  • [1]

    鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配 2021 物理学报 70 034204Google Scholar

    Lu L D, Zhu L Q, Zeng Z M, Cui Y P, Zhang D L, Yuan P 2021 Acta Phys. Sin. 70 034204Google Scholar

    [2]

    Tribelsky M I, Miroshnichenko A E 2016 Phys. Rev. A 93 053837Google Scholar

    [3]

    Kong X H, Xiao G B 2016 J. Opt. Soc. Am. A 33 707Google Scholar

    [4]

    Poddubny A N, Rybin M V, Limonov M F, Kivshar Y S 2012 Nat. Commun. 3 914Google Scholar

    [5]

    Rybin M V, Mingaleev S F, Limonov M F, Kivshar Y S 2016 Sci. Rep. 6 20599Google Scholar

    [6]

    Rybin M V, Khanikaev A B, Inoue M, Samusev K B, Steel M J, Yushin G, Limonov M F 2009 Phys. Rev. Lett. 103 023901Google Scholar

    [7]

    Sharac, N, Sharma H, Veysi M, Sanderson R N, Khine M, Capolino F, Ragan R 2016 Nanotechnology 27 105302Google Scholar

    [8]

    Guo M, Huang L R, Liu W B, Ding J F 2021 Opt. Mater. 112 110802Google Scholar

    [9]

    Wang W D, Zheng L, Wang Y L 2020 Opt. Commun. 454 124516Google Scholar

    [10]

    Kong Y, Cao J J, Qian W C, Liu C, Wang S Y 2018 IEEE Photon. J. 10 1943Google Scholar

    [11]

    Zhang Y H, Liang Z Z, Meng D J, Qin Z, Fan Y D, Shi X Y, Smith D R, Hou E Z 2021 Results Phys. 24 104129Google Scholar

    [12]

    Brandl D W, Mirin N A, Nordlander P 2006 J. Phys. Chem. B 110 12302Google Scholar

    [13]

    Hopkins B, Poddubny A N, Miroshnichenko A E, Kivshar Y S 2013 Phys. Rev. A (Coll Park) 88 053819Google Scholar

    [14]

    Forestiere C, Negro L D, Miano G 2013 Phys. Rev. B 88 155411Google Scholar

    [15]

    Gomez D E, Vernon K C, Davis T J 2010 Phys. Rev. B 81 075414Google Scholar

    [16]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [17]

    Chen Q, Wang D, Gao F 2021 Opt. Lett. 46 1209Google Scholar

    [18]

    Ito T, Sakoda K 2001 Phys. Rev. B 64 045117Google Scholar

    [19]

    Crozier K B, Lousse V, Kilic O, Kim S, Fan S, Solgaard O 2006 Phys. Rev. B 73 115126Google Scholar

    [20]

    崔成聪 2020 博士学位论文 (武汉: 华中科技大学)

    Cui C C 2020 Ph. D. Dissertation (Wuhang: Huazhong University of Science and Technology) (in Chinese)

    [21]

    Kilic O, Digonnet M, Kino G, Solgaard O 2008 Opt. Express 16 13090Google Scholar

    [22]

    Nicolaou C, Lau W T, Gad R, Akhavan H, Schilling R, Levi O 2013 Opt. Express 21 31698Google Scholar

    [23]

    Fan S H 2002 Phys. Rev. B 65 235112Google Scholar

    [24]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260Google Scholar

    [25]

    Rajratan B, Atwood L J 2019 Opt. Express 27 282Google Scholar

    [26]

    Lee J, Zhen B, Chua S L, Qiu W J, Joannopoulos J D, Soljacic M, Shapira O 2012 Phys. Rev. Lett. 109 067401Google Scholar

    [27]

    Staude I, Schilling J 2017 Nat. Photonics 11 274Google Scholar

  • [1] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] 蒋乐昕, 谢振龙, 郭泽虹, 丘伊宁, 陈溢杭. 基于准正则模式的全电介质超材料宽带反射器机理. 物理学报, 2023, 72(20): 204205. doi: 10.7498/aps.72.20230915
    [3] 陈颖, 周健, 丁志欣, 张敏, 朱奇光. 亚波长介质光栅/MDM波导/周期性光子晶体中双重Fano共振的形成及演变规律分析. 物理学报, 2022, 71(3): 034202. doi: 10.7498/aps.71.20211491
    [4] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振. 物理学报, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [5] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [6] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [7] 郭志巍, 郭寒贝, 王婷. 侧向局域共振超构板声振特性. 物理学报, 2021, 70(21): 214301. doi: 10.7498/aps.70.20210595
    [8] 陈颖, 周健, 丁志欣, 张敏, 朱奇光. 亚波长介质光栅/MDM波导/周期性光子晶体中双重Fano共振的形成及演变规律分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211491
    [9] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210855
    [10] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华. 含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性. 物理学报, 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [11] 李梦君, 方晖, 李小明, 袁小聪. D3h和D4h等离激元超分子的Fano共振光谱的 子集合分解解释. 物理学报, 2016, 65(5): 057302. doi: 10.7498/aps.65.057302
    [12] 徐常伟, 朱峰, 刘丽娜, 牛大鹏. 群论在对称结构电磁散射问题中的应用. 物理学报, 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [13] 刘冉, 史金辉, E. Plum, V.A. Fedotov, N.I. Zheludev. 基于平面超材料的Fano谐振可调谐研究. 物理学报, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [14] 黄永畅, 何斌, 黄昌宇, 杨士林, 宋加民. 因果代数及其在物理学中的应用. 物理学报, 2011, 60(2): 020201. doi: 10.7498/aps.60.020201
    [15] 胡昆明. 关于等价电子组态波函数与Young盘间变换性质的讨论. 物理学报, 2005, 54(10): 4524-4525. doi: 10.7498/aps.54.4524
    [16] 杨铮, 施毅, 刘法, 张荣, 郑有炓. 碳纳米管中的群论及一系列新点群. 物理学报, 2004, 53(12): 4299-4302. doi: 10.7498/aps.53.4299
    [17] 张海涛, 巩马理, 王东生, 李 伟, 赵达尊. 群论在光子带隙计算中的应用. 物理学报, 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [18] 郭 永, 顾秉林. 超晶格结构中共振劈裂的普遍性. 物理学报, 1999, 48(9): 1733-1744. doi: 10.7498/aps.48.1733
    [19] GaAs/AlAs超晶格的近共振喇曼散射研究. 物理学报, 1992, 41(4): 661-667. doi: 10.7498/aps.41.661
    [20] 衣虎春, 朱敏, 杨大智. NiTi记忆合金中R相和马氏体相中孪晶界面的群论分析. 物理学报, 1988, 37(8): 1376-1380. doi: 10.7498/aps.37.1376
计量
  • 文章访问数:  4316
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-01-27
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回