搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海胆状Au-Ag-Pt-Pd四元纳米合金的近红外光电响应特性及拉曼散射增强的研究

马慧 田悦 焦安欣 张梦雅 王畅 陈明

引用本文:
Citation:

海胆状Au-Ag-Pt-Pd四元纳米合金的近红外光电响应特性及拉曼散射增强的研究

马慧, 田悦, 焦安欣, 张梦雅, 王畅, 陈明

Research on near infrared photoelectric response and surface-enhanced Raman scatteringof urchin-like Au-Ag-Pt-Pd nanoalloy

Ma Hui, Tian Yue, Jiao An-Xin, Zhang Meng-Ya, Wang Chang, Chen Ming
PDF
HTML
导出引用
  • 与单金属相比, 多金属纳米材料具有优异宽波谱范围响应的局部表面等离子体共振(LSPR), 有利于提高光致电子转移效率并促进电荷载流子的有效分离. 本文通过种子生长法和化学还原法, 成功合成了具有多触角的海胆状金/银/铂/钯(Au-Ag-Pt-Pd NUs)四元纳米合金, 探究了该纳米合金在不同退火温度下的局部表面等离子体共振(LSPR)响应特性, 实验结果显示, 在近红外光(808 nm)激发下, 退火200 ℃的Au-Ag-Pt-Pd NUs的瞬态光电流强度是初始Au-Ag-Pt-Pd NUs的1.6倍. 此外, 以结晶紫(CV)作为探针分子, 退火200 ℃的Au-Ag-Pt-Pd NUs的表面增强拉曼光谱(SERS)信号强度是初始Au-Ag-Pt-Pd NUs的1.8倍, 从而验证了退火200 ℃的Au-Ag-Pt-Pd NUs具有很好的SERS活性, 同时CV探测浓度可低至10–12 M, 并且实现了低浓度H2O2探测, 探测范围: 0.09—1.02 μmol/L. 结果表明, 由于多重金属协同效应, 四元Au-Ag-Pt-Pd NUs复合结构具备优异的光电响应特性和较高的SERS灵敏度, 可为贵金属生物近红外探测提供新的思路.
    Compared with the single metal, multi-metallic nanoparticle has excellent localized surface plasmon resonance with a wide spectral range response, which is beneficial to improving both the photoinduced electron transfer efficiency and the effective electron-hole separation. In this work, the urchin-like Au-Ag-Pt-Pd nanoalloy (Au-Ag-Pt-Pd NU) with multiple tentacles is successfully synthesized by the seed growth method and chemical reduction method. And we explore the optical properties of Au-Ag-Pt-Pd NU at different annealing temperatures. The results show that the transient photocurrent intensity of Au-Ag-Pt-Pd NU annealed at 200 ℃ is 1.6 times that of the primitive Au-Ag-Pt-Pd NUs at 808 nm excitation. In addition, the SERS signal intensity of crystal violet (CV) adsorbed on the Au-Ag-Pt-Pd NUs annealed at 200 ℃ is 1.8 times that of the primitive Au-Ag-Pt-Pd NUs at 785 nm excitation. For the Au-Ag-Pt-Pd NUs in this work, the concentration of CV can be detected to be as low as 10–12 M. Furthermore, the interesting NIR-SERS sensor enables the detection limit of H2O2 at low concentration to reach 0.09–1.02 μmol/L. The results show that the obtained nanoalloy has excellent photoelectric response characteristics and high SERS sensitivity due to the synergistic effect of multi-metal. Thus, it possesses great potential for biological NIR detection in the future.
      通信作者: 陈明, chenming@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11905115, 11575102)和山东大学基本科研业务费专项资金 (批准号: 2018JC022)资助的课题
      Corresponding author: Chen Ming, chenming@sdu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 11905115, 11575102), and the Fundamental Research Funds of Shandong University, China (Grant No. 2018JC022)
    [1]

    Liang C, Lu Z, Wu J, Chen M, Zhang Y, Zhang B, Gao G, Li S, Xu P 2020 ACS Appl. Mater. Interfaces 12 54266Google Scholar

    [2]

    Zhang Z, Zhang C, Zheng H, Xu H 2019 Acc. Chem. Res. 52 2506Google Scholar

    [3]

    Zheng B Y, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [4]

    Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [5]

    Kang Y, Xue Q, Peng R, Jin P, Zeng J, Jiang J, Chen Y 2017 NPG Asia Mater. 9 e407Google Scholar

    [6]

    Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [7]

    Duchene J S, Niu W, Abendroth J M, Sun Q, Zhao W, Huo F, Wei W D 2013 Chem. Mater. 25 1392Google Scholar

    [8]

    Duchene J S, Almeida R P, Wei W D 2012 Dalton Trans. 41 7879Google Scholar

    [9]

    Wang J, Ma L, Xu J, Xu Y, Sun K, Peng Z 2021 SusMat 1 345Google Scholar

    [10]

    Yaseen T, Pu H, Sun D 2019 Food Anal. Methods 12 2094Google Scholar

    [11]

    Camacho S A, Sobral-Filho R G, Aoki P H B, Constantino C J L, Brolo A G 2018 ACS Sens. 3 587Google Scholar

    [12]

    Qiao X, Su B, Liu C, Song Q, Luo D, Mo G, Wang T 2018 Adv. Mater. 30 1702275Google Scholar

    [13]

    Romero-Natale A, Palchetti I, Avelar M, González-Vergara E, Garate-Morales J, Torres E 2019 Water 11 719Google Scholar

    [14]

    刘小红, 姜珊, 常林, 张炜 2020 物理学报 69 190701Google Scholar

    Liu X H, Jiang S, Chang L, Zhang W 2020 Acta Phys. Sin. 69 190701Google Scholar

    [15]

    Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z, Xia Y 2010 ACS Nano 4 6725Google Scholar

    [16]

    Bu L, Ding J, Guo S, Zhang X, Su D, Zhu X, Yao J, Guo J, Lu G, Huang X 2015 Adv. Mater. 27 7204Google Scholar

    [17]

    Genç A, Patarroyo J, Sancho-Parramon J, Arenal R, Duchamp M, Gonzalez E E, Henrard L, Bastús N G, Dunin-Borkowski R E, Puntes V F, Arbiol J 2016 ACS Photonics 3 770Google Scholar

    [18]

    Wang X, Ma G, Li A, Yu J, Yang Z, Lin J, Li A, Han X, Guo L 2018 Chem. Sci. 9 4009Google Scholar

    [19]

    Li J, Liu J, Yang Y, Qin D 2015 J. Am. Chem. Soc. 137 7039Google Scholar

    [20]

    He Y, Lu H, Sai L, Su Y, Hu M, Fan C, Huang W, Wang L 2008 Adv. Mater. 20 3416Google Scholar

    [21]

    Malankowska A, Mikolajczyk A, Mędrzycka J O, Wysocka I, Nowaczyk G, Jarek M, Puzyn T, Mulkiewicz E 2020 Environ. Sci. -Nano 7 3557Google Scholar

    [22]

    Bai X, Wang L, Wang Y, Yao W, Zhu Y 2014 Appl. Catal., B 152-153 262Google Scholar

    [23]

    Wang C, Nie X G, Shi Y, Zhou Y, Xu J J, Xia X H, Chen H Y 2017 ACS Nano 11 5897Google Scholar

    [24]

    Zhang C, Zhao H, Zhou L, Schlather A E, Dong L, McClain M J, Swearer D F, Nordlander P, Halas N J 2016 Nano Lett. 16 6677Google Scholar

    [25]

    Swearer D F, Zhao H, Zhou L, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 8916Google Scholar

    [26]

    Zhang X, Ke X, Yao J 2018 J. Mater. Chem. A 6 1941Google Scholar

    [27]

    Kumar V, O'Donnell S C, Sang D L, Maggard P A, Wang G 2019 Front. Chem. 7 299Google Scholar

    [28]

    Jiang L, Hassan M M, Ali S, Li H, Sheng R, Chen Q 2021 Trends Food Sci. Technol. 112 225Google Scholar

    [29]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [30]

    Ting A S Y, Lee M V J, Chow Y Y, Cheong S L 2016 Water Air Soil Pollut. 227 109Google Scholar

    [31]

    Meng M, Fang Z, Zhang C, Su H, He R, Zhang R, Li H, Li Z, Wu X, Ma C, Zeng J 2016 Nano Lett. 16 3036Google Scholar

    [32]

    Huang C, Valinton J A A, Hung Y, Chen C 2018 Sens. Actuators, B 266 463Google Scholar

    [33]

    Aparicio-Martínez E, Ibarra A, Estrada-Moreno I A, Osuna V, Dominguez R B 2019 Sens. Actuators, B 301 127101Google Scholar

    [34]

    Asadian E, Ghalkhani M, Shahrokhian S 2019 Sens. Actuators, B 293 183Google Scholar

    [35]

    Zhang R, Chen W 2017 Biosens. Bioelectron. 89 249Google Scholar

    [36]

    Yao D, Li C, Liang A, Jiang Z 2019 Spectrochim. Acta, Part A 216 146Google Scholar

    [37]

    Ma J, Feng G, Ying Y, Shao Y, She Y, Zheng L, Abd Ei-Aty A M, Wang J 2021 Analyst 146 956Google Scholar

  • 图 1  (a) 在初始状态下, Au-Ag-Pt-Pd NUs的SEM图像(插图: Au, Ag, Pt和Pd元素分布饼状图, 其中, Au, Ag, Pt和Pd元素比例分别是80.2%, 10.0%, 7.0%和2.8%); (b) 退火200 ℃, Au-Ag-Pt-Pd NUs的高倍SEM图像; 在退火200 ℃情况下, (c)和(d)分别Au-Ag-Pt-Pd NUs的TEM和HRTEM图像; (e)在退火200 ℃情况下, Au-Ag-Pt-Pd NUs的元素映射图像

    Fig. 1.  (a) The SEM image of Au-Ag-Pt-Pd NUs unannealed (inset: the proportions of Au, Ag, Pt and Pd are 80.2%, 10.0%, 7.0% and 2.8%, respectively); (b) the SEM image of Au-Ag-Pt-Pd NUs annealed 200 ℃; (c), (d) the TEM and HRTEM of Au-Ag-Pt-Pd NUs annealed 200 ℃; (e) the element mapping images of Au-Ag-Pt-Pd NUs annealed 200 ℃.

    图 2  (a) Au-Ag-Pt-Pd NUs在不同退火温度下的XRD; (b) Au-Ag-Pt-Pd NUs在不同退火温度下的吸收谱

    Fig. 2.  (a) and (b) are XRD and absorption of Au-Ag-Pt-Pd NUs at different annealing temperatures, respectively.

    图 3  Au, Ag, Pt 和Pd在不同退火温度下的XPS谱图 (a) Au; (b) Ag; (c) Pt; (d) Pd

    Fig. 3.  XPS spectra of (a) Au, (b) Ag, (c) Pt and (d) Pd at different annealing temperatures.

    图 4  (a), (b) 在808 nm激发下, Au-Ag-Pt-Pd NUs不同退火温度的瞬态光电流响应和峰值的柱状图; (c), (d) Au-Ag-Pt-Pd NUs在不同波长激光激发下瞬态光电流响应和峰值的柱状图

    Fig. 4.  (a), (b) The transient photocurrent responses and peak histogram of Au-Ag-Pt-Pd NUs at different annealing temperatures under excitation at 808 nm. (c), (d) the transient photocurrent responses and peak histogram of Au-Ag-Pt-Pd NUs at different wavelengths of laser.

    图 5  (a), (b) 退火200 ℃的Au-Ag-Pt-Pd NUs在808 nm不同激光强度下瞬态光电流响应和强度线性关系图

    Fig. 5.  (a) The transient photocurrent responses of Au-Ag-Pt-Pd NUs annealed 200 ℃ at the different output power of 808 nm laser; (b) the relationship between the output power of 808 nm and current intensity.

    图 6  (a) SERS信号采集示意图. 不同退火温度下, Au-Ag-Pt-Pd NUs的CV(10–7 M)拉曼信号谱图(b)和峰值的柱状图(c). (d) 在退火200 ℃ Au-Ag-Pt-Pd NUs的SERS基底下, 不同浓度CV分子的SERS谱图. (e) 探针分子CV位于1177, 1367, 1587和1615 cm–1特征峰的SERS信号强度与CV分子浓度的线性关系

    Fig. 6.  (a) The SERS system with Au-Ag-Pt-Pd NUs as substrate and 785 nm NIR laser source. (b) SERS signal and (c) peak histogram of CV absorbed on Au-Ag-Pt-Pd NUs at different annealed temperatures. (d) based on the obtained Au-Ag-Pt-Pd NUs annealed 200 ℃, SERS spectra of CV at different concentrations. (e) the relationships between SERS peak intensities at 1177, 1376, 1587 and 1615 cm–1, and the concentration of CV molecules.

    图 7  (a)在不同H2O2浓度下, 探针分子TMB在Au-Ag-Pt-Pd NUs的SERS信号; (b)在1605 cm–1拉曼峰处, H2O2浓度和拉曼信号强度的线性关系

    Fig. 7.  (a) SERS signal of TMB on Au-Ag-Pt-Pd NUs substrate under different concentrations of H2O2; (b) the relationship between SERS signal intensity and the concentration of H2O2 at peak of 1605 cm–1.

  • [1]

    Liang C, Lu Z, Wu J, Chen M, Zhang Y, Zhang B, Gao G, Li S, Xu P 2020 ACS Appl. Mater. Interfaces 12 54266Google Scholar

    [2]

    Zhang Z, Zhang C, Zheng H, Xu H 2019 Acc. Chem. Res. 52 2506Google Scholar

    [3]

    Zheng B Y, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [4]

    Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [5]

    Kang Y, Xue Q, Peng R, Jin P, Zeng J, Jiang J, Chen Y 2017 NPG Asia Mater. 9 e407Google Scholar

    [6]

    Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [7]

    Duchene J S, Niu W, Abendroth J M, Sun Q, Zhao W, Huo F, Wei W D 2013 Chem. Mater. 25 1392Google Scholar

    [8]

    Duchene J S, Almeida R P, Wei W D 2012 Dalton Trans. 41 7879Google Scholar

    [9]

    Wang J, Ma L, Xu J, Xu Y, Sun K, Peng Z 2021 SusMat 1 345Google Scholar

    [10]

    Yaseen T, Pu H, Sun D 2019 Food Anal. Methods 12 2094Google Scholar

    [11]

    Camacho S A, Sobral-Filho R G, Aoki P H B, Constantino C J L, Brolo A G 2018 ACS Sens. 3 587Google Scholar

    [12]

    Qiao X, Su B, Liu C, Song Q, Luo D, Mo G, Wang T 2018 Adv. Mater. 30 1702275Google Scholar

    [13]

    Romero-Natale A, Palchetti I, Avelar M, González-Vergara E, Garate-Morales J, Torres E 2019 Water 11 719Google Scholar

    [14]

    刘小红, 姜珊, 常林, 张炜 2020 物理学报 69 190701Google Scholar

    Liu X H, Jiang S, Chang L, Zhang W 2020 Acta Phys. Sin. 69 190701Google Scholar

    [15]

    Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z, Xia Y 2010 ACS Nano 4 6725Google Scholar

    [16]

    Bu L, Ding J, Guo S, Zhang X, Su D, Zhu X, Yao J, Guo J, Lu G, Huang X 2015 Adv. Mater. 27 7204Google Scholar

    [17]

    Genç A, Patarroyo J, Sancho-Parramon J, Arenal R, Duchamp M, Gonzalez E E, Henrard L, Bastús N G, Dunin-Borkowski R E, Puntes V F, Arbiol J 2016 ACS Photonics 3 770Google Scholar

    [18]

    Wang X, Ma G, Li A, Yu J, Yang Z, Lin J, Li A, Han X, Guo L 2018 Chem. Sci. 9 4009Google Scholar

    [19]

    Li J, Liu J, Yang Y, Qin D 2015 J. Am. Chem. Soc. 137 7039Google Scholar

    [20]

    He Y, Lu H, Sai L, Su Y, Hu M, Fan C, Huang W, Wang L 2008 Adv. Mater. 20 3416Google Scholar

    [21]

    Malankowska A, Mikolajczyk A, Mędrzycka J O, Wysocka I, Nowaczyk G, Jarek M, Puzyn T, Mulkiewicz E 2020 Environ. Sci. -Nano 7 3557Google Scholar

    [22]

    Bai X, Wang L, Wang Y, Yao W, Zhu Y 2014 Appl. Catal., B 152-153 262Google Scholar

    [23]

    Wang C, Nie X G, Shi Y, Zhou Y, Xu J J, Xia X H, Chen H Y 2017 ACS Nano 11 5897Google Scholar

    [24]

    Zhang C, Zhao H, Zhou L, Schlather A E, Dong L, McClain M J, Swearer D F, Nordlander P, Halas N J 2016 Nano Lett. 16 6677Google Scholar

    [25]

    Swearer D F, Zhao H, Zhou L, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 8916Google Scholar

    [26]

    Zhang X, Ke X, Yao J 2018 J. Mater. Chem. A 6 1941Google Scholar

    [27]

    Kumar V, O'Donnell S C, Sang D L, Maggard P A, Wang G 2019 Front. Chem. 7 299Google Scholar

    [28]

    Jiang L, Hassan M M, Ali S, Li H, Sheng R, Chen Q 2021 Trends Food Sci. Technol. 112 225Google Scholar

    [29]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [30]

    Ting A S Y, Lee M V J, Chow Y Y, Cheong S L 2016 Water Air Soil Pollut. 227 109Google Scholar

    [31]

    Meng M, Fang Z, Zhang C, Su H, He R, Zhang R, Li H, Li Z, Wu X, Ma C, Zeng J 2016 Nano Lett. 16 3036Google Scholar

    [32]

    Huang C, Valinton J A A, Hung Y, Chen C 2018 Sens. Actuators, B 266 463Google Scholar

    [33]

    Aparicio-Martínez E, Ibarra A, Estrada-Moreno I A, Osuna V, Dominguez R B 2019 Sens. Actuators, B 301 127101Google Scholar

    [34]

    Asadian E, Ghalkhani M, Shahrokhian S 2019 Sens. Actuators, B 293 183Google Scholar

    [35]

    Zhang R, Chen W 2017 Biosens. Bioelectron. 89 249Google Scholar

    [36]

    Yao D, Li C, Liang A, Jiang Z 2019 Spectrochim. Acta, Part A 216 146Google Scholar

    [37]

    Ma J, Feng G, Ying Y, Shao Y, She Y, Zheng L, Abd Ei-Aty A M, Wang J 2021 Analyst 146 956Google Scholar

  • [1] 杜立杰, 陈靖雯, 王荣明. 基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器. 物理学报, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [2] 郑林启, 时术华, 李金泽, 王子宇, 李爽. 高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究. 物理学报, 2023, 72(22): 227401. doi: 10.7498/aps.72.20231105
    [3] 赵雨辰, 郑家欢, 王勇, 席晓莉, 宋海智. 纳米多孔氮化铌薄膜红外宽带光响应特性. 物理学报, 2022, 71(5): 058501. doi: 10.7498/aps.71.20211694
    [4] 赵雨辰, 郑家欢, 王勇, 席晓莉, 宋海智. 纳米多孔氮化铌薄膜红外宽带光响应特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211694
    [5] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [6] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用. 物理学报, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [7] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [8] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [9] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [10] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [11] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [12] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应. 物理学报, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [13] 刘 霖, 叶玉堂, 吴云峰, 方 亮, 陆佳佳. GaAs表面不同运动状态H2SO4-H2O2-H2O液滴的红外辐射特性. 物理学报, 2007, 56(6): 3172-3177. doi: 10.7498/aps.56.3172
    [14] 李发伸, 王 涛, 王 颖. H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样品的比较. 物理学报, 2005, 54(7): 3100-3105. doi: 10.7498/aps.54.3100
    [15] 徐克西, 周世平, 鲍家善. YBa2Cu3O7-δ外延膜中的非线性光响应. 物理学报, 1998, 47(2): 307-315. doi: 10.7498/aps.47.307
    [16] 叶晓岚, 邓文杰, 梁二军. 卤酸根离子的近红外表面增强Raman散射. 物理学报, 1997, 46(11): 2130-2137. doi: 10.7498/aps.46.2130
    [17] 林军, 张丽珠, 张伯蕊, 宗柏青, 秦国刚, 许振华. 光照下经H2O2处理的多孔硅的光致发光. 物理学报, 1994, 43(4): 646-650. doi: 10.7498/aps.43.646
    [18] 陈芸琪;林彰达;齐上雪;谢侃;常英传;侯德森;王泰宏. SrTiO_3表面O_2,H_2_O吸附的UPS,XPS研究. 物理学报, 1987, 36(8): 1075-1080. doi: 10.7498/aps.36.1075
    [19] 胡永军, 林彰达, 王昌衡, 谢侃. O2的化学吸附对2H—MoS2(0001)清洁表面和离子溅射表面电子结构的影响. 物理学报, 1986, 35(1): 50-57. doi: 10.7498/aps.35.50
    [20] 虞心南, 张青哲, 谢侃, 齐上雪, 康瑾, 林彰达. 富镧混合稀土-镍贮氢材料CO,O2和H2O中毒的表面特征. 物理学报, 1983, 32(10): 1333-1338. doi: 10.7498/aps.32.1333
计量
  • 文章访问数:  5310
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2022-02-06
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回