搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米多孔氮化铌薄膜红外宽带光响应特性

赵雨辰 郑家欢 王勇 席晓莉 宋海智

引用本文:
Citation:

纳米多孔氮化铌薄膜红外宽带光响应特性

赵雨辰, 郑家欢, 王勇, 席晓莉, 宋海智

Infrared broadband photoresponse characteristics of nanoporous NbN film

Zhao Yu-Chen, Zheng Jia-Huan, Wang Yong, Xi Xiao-Li, Song Hai-Zhi
PDF
HTML
导出引用
  • 具有超导绝缘相变特性的纳米多孔超导薄膜在红外光电探测领域有着潜在的应用价值, 而其在红外波段的宽带光响应特性研究目前尚未见报道. 为此, 本文以纳米多孔氮化铌(NbN)薄膜为主要对象, 研究了其在780—5000 nm的近、中红外波长范围内的光响应特性. 首先, 采用Drude模型拟合的方法, 不仅将对实验数据拟合的精度提高了约17%, 而且得到了中红外波段的NbN光学参数; 进而, 采用时域有限差分法分析了加载纳米多孔NbN薄膜的背面对光器件的光响应特性, 并给出了能够将纳米多孔薄膜简化为均匀薄膜的Bruggeman等效模型, 从而可以将纳米多孔NbN薄膜光响应特性的仿真维度由三维降为一维; 最后, 基于等效模型和传输矩阵法, 对加载纳米多孔NbN薄膜的背面对光器件在近、中红外波段内的光吸收特性进行了优化设计. 结果表明: 一方面, 使用Bruggeman等效模型简化设计过程并不会影响最终结果的正确性; 另一方面, 仅仅是加载较为简单的光学腔, 即可使得探测器的薄膜光吸收率在近、中红外宽带设计时均大于82%, 在近红外双波长设计时均大于93.7%, 并且多孔薄膜结构具有天然的极化不敏感特性.
    Nanoporous superconducting films with superconductor-insulator transition characteristics have potential application in the field of infrared photoelectric detection, but their broadband optical response characteristics in infrared band have not been reported. Therefore, taking nanoporous niobium nitride (NbN) films as the main object, the optical response characteristics in the near and medium infrared wavelength range of 780–5000 nm are studied in this paper. Firstly, the Drude-model fitting accuracy of measured NbN permittivity is improved by about 17%, and the NbN optical parameters in mid-infrared band are obtained. Furthermore, the optical response characteristics of the back-illuminated device with nanoporous NbN film are analyzed by finite difference time domain method, and a Bruggeman equivalent model which can simplify the nanoporous film into a uniform film is given, thereby reducing the three-dimensional simulation of nanoporous NbN film into one dimensional simulation. Finally, based on the equivalent model and the transfer matrix method, the light absorption characteristics of the back-illuminated device in near-/mid-infrared wavelength ranges are optimized. The results indicate that, on the one hand, simplifying the design process by using Bruggeman equivalent model will not affect the correctness of the final optimization results, and, on the other hand, a relatively simple optical cavity can make the detector achieve polarization-independent film absorption greater than 82% for near-/mid-infrared broadband design and 93.7% for double-wavelength design.
      通信作者: 王勇, ywang@uestc.edu.cn ; 席晓莉, xixiaoli@xaut.edu.cn ; 宋海智, hzsong1296@163.com
    • 基金项目: 国家自然科学基金(批准号: 61971346)和西安理工大学科学基金(批准号: 103-451319009, 103-451420002)资助的课题.
      Corresponding author: Wang Yong, ywang@uestc.edu.cn ; Xi Xiao-Li, xixiaoli@xaut.edu.cn ; Song Hai-Zhi, hzsong1296@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61971346) and the Science Foundation of Xi’an University of Technology, China (Grant Nos. 103-451319009, 103-451420002).
    [1]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [2]

    Lovell D 1969 Am. J. Phys. 37 467Google Scholar

    [3]

    Lawson W, Nielsen S, Putley E, Young A 1959 J. Phys. Chem. Solids 9 325Google Scholar

    [4]

    Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar

    [5]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [7]

    Yang L, Jacob Z 2019 Opt. Express 27 10482Google Scholar

    [8]

    Yang L, Jacob Z 2019 J. Appl. Phys. 126 174502Google Scholar

    [9]

    Yang L, Jacob Z 2020 NPJ Quantum Inf. 6 76Google Scholar

    [10]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315Google Scholar

    [11]

    李岚 2018 硕士学位论文 (成都: 电子科技大学)

    Li L 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [12]

    Kapitulnik A, Kivelson B, Spivak B 2019 Rev. Mod. Phys. 91 011002Google Scholar

    [13]

    Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang Jian, Li Y R 2019 Science 366 1505Google Scholar

    [14]

    Chen Z Y, Wang B Y, Swartz A G, Yoon H. Hikita Y, Raghu S, Hwang H Y 2021 npj Quantum Mater. 6 1Google Scholar

    [15]

    Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar

    [16]

    吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨 2018 物理学报 67 248501Google Scholar

    Wu Y, Chen Q, Xu R Y, Ge R, Zhang B, Tao X, Tu X C, Jia X Q, Zhang L B, Kang L, Wu P H 2018 Acta Phys. Sin. 67 248501Google Scholar

    [17]

    Echtermeyer T, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8Google Scholar

    [18]

    Hu X L, Cheng Y H, Gu C, Zhu X T, Liu H Y 2015 Sci. Bull. 60 1980Google Scholar

    [19]

    Sunter K A, Berggren K K 2018 Appl. Opt. 57 4872Google Scholar

    [20]

    Zheng F, Xu R Y, Chen Y J, Zhu G H, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2017 IEEE Photonics J. 9 4502108Google Scholar

    [21]

    吴洋 2019 硕士学位论文 (南京: 南京大学)

    Wu Y 2018 M. S. Thesis (Nanjing: Nanjing University) (in Chinese)

    [22]

    Hu X L 2011 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [23]

    Hu X L, Marsili F, Najafi F, Berggren K K 2010 Proceedings of Quantum Electronics and Laser Science Conference San Jose, USA, May 16–21, 2010 pQThD5

    [24]

    Khardani M, Bouaїcha M, Bessaїs B 2007 Phys. Status Solidi C 4 1986Google Scholar

    [25]

    Stephens R E, Malitson I H 1952 J. Res. Nat. Bur. Stand. 49 249Google Scholar

  • 图 1  纳米多孔NbN薄膜结构示意图

    Fig. 1.  NbN film with nanoporous structure.

    图 2  使用Drude模型拟合NbN复介电常数的结果

    Fig. 2.  Fit of the measured results of complex dielectric constant of NbN using Drude model.

    图 3  NbN薄膜光响应特性仿真 (a)仿真模型示意图; (b)反射; (c)透射; (d)吸收

    Fig. 3.  Simulation of optical response characteristics of NbN film: (a) Simulation model sketch; (b) reflection; (c) transmission; (d) absorption.

    图 4  等效模型的效果分析 (a) 不同形状参数d的吸收率误差; (b) 反射(d = 3); (c) 透射(d = 3); (d) 吸收(d = 3)

    Fig. 4.  Effect analysis of equivalent model: (a) Error; (b) reflection (d = 3); (c) transmission (d = 3); (d) absorption (d = 3).

    图 5  NbN薄膜的趋肤深度

    Fig. 5.  Skin depth of NbN film.

    图 6  背面对光器件结构优化 (a) 待优化模型; (b) 中红外宽带; (c) 近红外宽带; (d) 近红外双波长

    Fig. 6.  Devices structure optimization of incident light: (a) Device model; (b) broadband in mid-infrared; (c) broadband in near-infrared; (d) dual-wavelength in near-infrared.

  • [1]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [2]

    Lovell D 1969 Am. J. Phys. 37 467Google Scholar

    [3]

    Lawson W, Nielsen S, Putley E, Young A 1959 J. Phys. Chem. Solids 9 325Google Scholar

    [4]

    Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar

    [5]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [7]

    Yang L, Jacob Z 2019 Opt. Express 27 10482Google Scholar

    [8]

    Yang L, Jacob Z 2019 J. Appl. Phys. 126 174502Google Scholar

    [9]

    Yang L, Jacob Z 2020 NPJ Quantum Inf. 6 76Google Scholar

    [10]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315Google Scholar

    [11]

    李岚 2018 硕士学位论文 (成都: 电子科技大学)

    Li L 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [12]

    Kapitulnik A, Kivelson B, Spivak B 2019 Rev. Mod. Phys. 91 011002Google Scholar

    [13]

    Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang Jian, Li Y R 2019 Science 366 1505Google Scholar

    [14]

    Chen Z Y, Wang B Y, Swartz A G, Yoon H. Hikita Y, Raghu S, Hwang H Y 2021 npj Quantum Mater. 6 1Google Scholar

    [15]

    Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar

    [16]

    吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨 2018 物理学报 67 248501Google Scholar

    Wu Y, Chen Q, Xu R Y, Ge R, Zhang B, Tao X, Tu X C, Jia X Q, Zhang L B, Kang L, Wu P H 2018 Acta Phys. Sin. 67 248501Google Scholar

    [17]

    Echtermeyer T, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8Google Scholar

    [18]

    Hu X L, Cheng Y H, Gu C, Zhu X T, Liu H Y 2015 Sci. Bull. 60 1980Google Scholar

    [19]

    Sunter K A, Berggren K K 2018 Appl. Opt. 57 4872Google Scholar

    [20]

    Zheng F, Xu R Y, Chen Y J, Zhu G H, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2017 IEEE Photonics J. 9 4502108Google Scholar

    [21]

    吴洋 2019 硕士学位论文 (南京: 南京大学)

    Wu Y 2018 M. S. Thesis (Nanjing: Nanjing University) (in Chinese)

    [22]

    Hu X L 2011 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [23]

    Hu X L, Marsili F, Najafi F, Berggren K K 2010 Proceedings of Quantum Electronics and Laser Science Conference San Jose, USA, May 16–21, 2010 pQThD5

    [24]

    Khardani M, Bouaїcha M, Bessaїs B 2007 Phys. Status Solidi C 4 1986Google Scholar

    [25]

    Stephens R E, Malitson I H 1952 J. Res. Nat. Bur. Stand. 49 249Google Scholar

  • [1] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理. 物理学报, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [2] 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析. 物理学报, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [3] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟. 物理学报, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [4] 王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能. 物理学报, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
    [5] 赵雨辰, 郑家欢, 王勇, 席晓莉, 宋海智. 纳米多孔氮化铌薄膜红外宽带光响应特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211694
    [6] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计. 物理学报, 2020, 69(13): 134303. doi: 10.7498/aps.69.20200368
    [7] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前. Ag@SiO2耦合结构设计及其对薄膜太阳电池的响应调控. 物理学报, 2020, 69(18): 188801. doi: 10.7498/aps.69.20200334
    [8] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计. 物理学报, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [9] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [10] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化. 物理学报, 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [11] 宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌. SOI SiGe HBT结构设计及频率特性研究. 物理学报, 2014, 63(11): 118501. doi: 10.7498/aps.63.118501
    [12] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计. 物理学报, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [13] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [14] 焦健, 高劲松, 徐念喜, 陈新. 基于互补屏的极化分离结构设计研究. 物理学报, 2013, 62(19): 197303. doi: 10.7498/aps.62.197303
    [15] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣. 十字环型左手材料单元结构设计与仿真. 物理学报, 2012, 61(16): 164101. doi: 10.7498/aps.61.164101
    [16] 周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰. 非晶硅光伏电池表面高效光陷阱结构设计. 物理学报, 2011, 60(8): 088802. doi: 10.7498/aps.60.088802
    [17] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [18] 张松, 屈绍波, 马华, 谢峰, 徐卓. 基于平行金属条的左手结构设计与仿真研究. 物理学报, 2009, 58(6): 3961-3965. doi: 10.7498/aps.58.3961
    [19] 王 源, 贾 嵩, 孙 磊, 张钢刚, 张 兴, 吉利久. 栅耦合型静电泄放保护结构设计. 物理学报, 2007, 56(12): 7242-7247. doi: 10.7498/aps.56.7242
    [20] 杨全民, 许启明, 方允樟, 王玲玲, 施方也. 铁基纳米晶合金介观结构的等效RLC并联模型. 物理学报, 2007, 56(6): 3366-3373. doi: 10.7498/aps.56.3366
计量
  • 文章访问数:  4134
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-10-25
  • 上网日期:  2022-02-28
  • 刊出日期:  2022-03-05

/

返回文章
返回