-
具有超导绝缘相变特性的纳米多孔超导薄膜在红外光电探测领域有着潜在的应用价值, 而其在红外波段的宽带光响应特性研究目前尚未见报道. 为此, 本文以纳米多孔氮化铌(NbN)薄膜为主要对象, 研究了其在780—5000 nm的近、中红外波长范围内的光响应特性. 首先, 采用Drude模型拟合的方法, 不仅将对实验数据拟合的精度提高了约17%, 而且得到了中红外波段的NbN光学参数; 进而, 采用时域有限差分法分析了加载纳米多孔NbN薄膜的背面对光器件的光响应特性, 并给出了能够将纳米多孔薄膜简化为均匀薄膜的Bruggeman等效模型, 从而可以将纳米多孔NbN薄膜光响应特性的仿真维度由三维降为一维; 最后, 基于等效模型和传输矩阵法, 对加载纳米多孔NbN薄膜的背面对光器件在近、中红外波段内的光吸收特性进行了优化设计. 结果表明: 一方面, 使用Bruggeman等效模型简化设计过程并不会影响最终结果的正确性; 另一方面, 仅仅是加载较为简单的光学腔, 即可使得探测器的薄膜光吸收率在近、中红外宽带设计时均大于82%, 在近红外双波长设计时均大于93.7%, 并且多孔薄膜结构具有天然的极化不敏感特性.
-
关键词:
- 纳米多孔NbN薄膜 /
- 红外宽带光响应 /
- Bruggeman等效模型 /
- 器件结构设计
Nanoporous superconducting films with superconductor-insulator transition characteristics have potential application in the field of infrared photoelectric detection, but their broadband optical response characteristics in infrared band have not been reported. Therefore, taking nanoporous niobium nitride (NbN) films as the main object, the optical response characteristics in the near and medium infrared wavelength range of 780–5000 nm are studied in this paper. Firstly, the Drude-model fitting accuracy of measured NbN permittivity is improved by about 17%, and the NbN optical parameters in mid-infrared band are obtained. Furthermore, the optical response characteristics of the back-illuminated device with nanoporous NbN film are analyzed by finite difference time domain method, and a Bruggeman equivalent model which can simplify the nanoporous film into a uniform film is given, thereby reducing the three-dimensional simulation of nanoporous NbN film into one dimensional simulation. Finally, based on the equivalent model and the transfer matrix method, the light absorption characteristics of the back-illuminated device in near-/mid-infrared wavelength ranges are optimized. The results indicate that, on the one hand, simplifying the design process by using Bruggeman equivalent model will not affect the correctness of the final optimization results, and, on the other hand, a relatively simple optical cavity can make the detector achieve polarization-independent film absorption greater than 82% for near-/mid-infrared broadband design and 93.7% for double-wavelength design.-
Keywords:
- nanoporous NbN film /
- infrared broadband photoresponse /
- Bruggeman theory /
- device structure design
[1] 胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar
[2] Lovell D 1969 Am. J. Phys. 37 467Google Scholar
[3] Lawson W, Nielsen S, Putley E, Young A 1959 J. Phys. Chem. Solids 9 325Google Scholar
[4] Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar
[5] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[7] Yang L, Jacob Z 2019 Opt. Express 27 10482Google Scholar
[8] Yang L, Jacob Z 2019 J. Appl. Phys. 126 174502Google Scholar
[9] Yang L, Jacob Z 2020 NPJ Quantum Inf. 6 76Google Scholar
[10] Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315Google Scholar
[11] 李岚 2018 硕士学位论文 (成都: 电子科技大学)
Li L 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[12] Kapitulnik A, Kivelson B, Spivak B 2019 Rev. Mod. Phys. 91 011002Google Scholar
[13] Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang Jian, Li Y R 2019 Science 366 1505Google Scholar
[14] Chen Z Y, Wang B Y, Swartz A G, Yoon H. Hikita Y, Raghu S, Hwang H Y 2021 npj Quantum Mater. 6 1Google Scholar
[15] Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar
[16] 吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨 2018 物理学报 67 248501Google Scholar
Wu Y, Chen Q, Xu R Y, Ge R, Zhang B, Tao X, Tu X C, Jia X Q, Zhang L B, Kang L, Wu P H 2018 Acta Phys. Sin. 67 248501Google Scholar
[17] Echtermeyer T, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8Google Scholar
[18] Hu X L, Cheng Y H, Gu C, Zhu X T, Liu H Y 2015 Sci. Bull. 60 1980Google Scholar
[19] Sunter K A, Berggren K K 2018 Appl. Opt. 57 4872Google Scholar
[20] Zheng F, Xu R Y, Chen Y J, Zhu G H, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2017 IEEE Photonics J. 9 4502108Google Scholar
[21] 吴洋 2019 硕士学位论文 (南京: 南京大学)
Wu Y 2018 M. S. Thesis (Nanjing: Nanjing University) (in Chinese)
[22] Hu X L 2011 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[23] Hu X L, Marsili F, Najafi F, Berggren K K 2010 Proceedings of Quantum Electronics and Laser Science Conference San Jose, USA, May 16–21, 2010 pQThD5
[24] Khardani M, Bouaїcha M, Bessaїs B 2007 Phys. Status Solidi C 4 1986Google Scholar
[25] Stephens R E, Malitson I H 1952 J. Res. Nat. Bur. Stand. 49 249Google Scholar
-
-
[1] 胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar
[2] Lovell D 1969 Am. J. Phys. 37 467Google Scholar
[3] Lawson W, Nielsen S, Putley E, Young A 1959 J. Phys. Chem. Solids 9 325Google Scholar
[4] Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar
[5] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[7] Yang L, Jacob Z 2019 Opt. Express 27 10482Google Scholar
[8] Yang L, Jacob Z 2019 J. Appl. Phys. 126 174502Google Scholar
[9] Yang L, Jacob Z 2020 NPJ Quantum Inf. 6 76Google Scholar
[10] Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315Google Scholar
[11] 李岚 2018 硕士学位论文 (成都: 电子科技大学)
Li L 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[12] Kapitulnik A, Kivelson B, Spivak B 2019 Rev. Mod. Phys. 91 011002Google Scholar
[13] Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang Jian, Li Y R 2019 Science 366 1505Google Scholar
[14] Chen Z Y, Wang B Y, Swartz A G, Yoon H. Hikita Y, Raghu S, Hwang H Y 2021 npj Quantum Mater. 6 1Google Scholar
[15] Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar
[16] 吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨 2018 物理学报 67 248501Google Scholar
Wu Y, Chen Q, Xu R Y, Ge R, Zhang B, Tao X, Tu X C, Jia X Q, Zhang L B, Kang L, Wu P H 2018 Acta Phys. Sin. 67 248501Google Scholar
[17] Echtermeyer T, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8Google Scholar
[18] Hu X L, Cheng Y H, Gu C, Zhu X T, Liu H Y 2015 Sci. Bull. 60 1980Google Scholar
[19] Sunter K A, Berggren K K 2018 Appl. Opt. 57 4872Google Scholar
[20] Zheng F, Xu R Y, Chen Y J, Zhu G H, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2017 IEEE Photonics J. 9 4502108Google Scholar
[21] 吴洋 2019 硕士学位论文 (南京: 南京大学)
Wu Y 2018 M. S. Thesis (Nanjing: Nanjing University) (in Chinese)
[22] Hu X L 2011 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
[23] Hu X L, Marsili F, Najafi F, Berggren K K 2010 Proceedings of Quantum Electronics and Laser Science Conference San Jose, USA, May 16–21, 2010 pQThD5
[24] Khardani M, Bouaїcha M, Bessaїs B 2007 Phys. Status Solidi C 4 1986Google Scholar
[25] Stephens R E, Malitson I H 1952 J. Res. Nat. Bur. Stand. 49 249Google Scholar
计量
- 文章访问数: 4134
- PDF下载量: 69
- 被引次数: 0