搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于激光辐照热效应的薄膜参数反演方法

陈桂波 张佳佳 王超群 毕娟

引用本文:
Citation:

一种基于激光辐照热效应的薄膜参数反演方法

陈桂波, 张佳佳, 王超群, 毕娟

A parameter inversion method of film based on thermal effects induced by laser irradiation

Chen Gui-Bo, Zhang Jia-Jia, Wang Chao-Qun, Bi Juan
PDF
导出引用
  • 本文研究并建立了一种基于激光辐照热效应的薄膜参数反演方法. 首先给出激光辐照薄膜产生温升问题的热传导理论模型, 并利用拉普拉斯变换得到了膜层和基底温度场的解析解; 然后以膜层和基底的导热系数为反演参数, 基于非线性共轭梯度算法给出反演基本原理及流程, 并推导得到了反演过程中灵敏度系数的解析表达式; 以aluminum, silver, copper和gold四种金属薄膜为例, 通过与有限元法的计算结果对比验证了温度场解析解的正确性; 最后结合四种金属薄膜进行了参数反演, 通过考察分析不同随机噪声等条件下的参数反演结果, 验证了本文方法在薄膜参数反演精度与反演效率等方面的有效性. 反演结果显示: 本文方法具有较高的反演精度和效率, 在迭代截止误差为10-7时只需用少于20次迭代就能收敛; 在测量数据中加入的随机噪声越小, 反演的迭代收敛次数就越少, 即使是在迭代初值与反演结果相差较大时, 用包含5% 随机噪声的测量数据反演也能快速收敛. 本文提出的薄膜参数反演方法不仅适用于反演导热系数, 也可扩展用于反演膜层反射系数或吸收率等参数, 具有一定的适用性. 本文方法对于激光加工或激光损伤过程中的参数反演及优化具有一定的指导意义.
    In this paper, we present an inversion estimation method of thin film parameters based on thermal effects induced by laser irradiation. Firstly, the theoretical model of classical Fourier heat conduction of thin film irradiated by laser is established, and the analytical solutions of temperature fields are obtained by using Laplace transform. Then, the inversion model and the iteration algorithm are established based on the nonlinear conjugate gradient method on condition that the thermal conductivities of the film and the substrate are selected as inversion parameters and the temperature fields of the thin film surface in different irradiation times are selected as measured data. In view of the fact that the sensitivity coefficient plays a decisive role in determining the accuracy and efficiency of the nonlinear conjugate gradient iteration inversion algorithm, we derive the closed form expressions of the sensitivity coefficients for the thermal conductivities of the film and the substrate based on the above analytical solutions of the temperature fields, and this closed form expressions can improve the accuracy and efficiency of the thin film parameter inversion significantly. Taking four kinds of metal films (aluminum, silver, copper and gold) with glass substrate for example, the accuracies of the analytical solutions of temperature fields are verified by comparing with the numerical results from the finite element method in the existing literature, and it can ensure the accuracies of the sensitivity coefficients in the process of iteration inversion. Finally, the thermal conductivities of the above four kinds of thin films are estimated by using the presented iteration inversion method. The accuracy and efficiency of the parameter inversion are verified by investigating and analyzing the inversion results of the parameters for different random noises and different iterative initial values. The inversion results show that this method has a high accuracy and efficiency, and it only needs less than 20 iteration times to convergence when the iteration stop error is 10-7. The smaller random noise is added in the measured data, and the less iteration times to convergence are needed. It can achieve higher convergence efficiency even in the iterative initial values from the inversion results that differ greatly for the case of 5% random noise. This inversion method of thin film parameters is not only applicable to the inversion of the thermal conductivity, but can also be used to inverse the parameters such as the reflection coefficient or the absorption coefficient. The presented method has a certain guiding significance for the parameters inversion and the parameters optimization in the process of the laser processing or the laser damage.
      通信作者: 毕娟, youbj_cn@sina.com
    • 基金项目: 长春理工大学青年基金(批准号: XQNJJ-2014-03)资助的课题.
      Corresponding author: Bi Juan, youbj_cn@sina.com
    • Funds: Project supported by the Young Science Foundation of Changchun University of Science and Technology, China (Grant No. XQNJJ-2014-03).
    [1]

    Wang Y, Liu X, Zhang Y G, Gu P F, Li Y Y, Li M Y 2007 Acta Phys. Sin. 56 2382 (in Chinese) [王颖, 刘旭, 章岳光, 顾培夫, 厉以宇, 李明宇 2007 物理学报 56 2382]

    [2]

    Zhao Y A, Wang T, Zhang D P, He H B, Shao J D, Fan Z X 2005 Acta Phot. Sin. 34 1372 (in Chinese) [赵元安, 王涛, 张东平, 贺洪波, 邵建达, 范正修 2005 光子学报 34 1372]

    [3]

    Wang B 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王斌 2012 博士学位论文(南京: 南京理工大学)]

    [4]

    Wang B, Dai G, Zhang H C, Ni X W, Shen Z H, Lu J 2011 Appl. Surf. Sci. 257 9977

    [5]

    Wang B, Zhang H C, Qin Y, Wang X, Ni X W, Shen Z H, Lu J 2011 Appl. Opt. 50 3435

    [6]

    Sun J Y 2007 M. S. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [孙金英 2007 硕士学位论文 (南京: 南京理工大学)]

    [7]

    Ozisik M N, Orlande H R B 2000 Inverse Heat Transfer: Fundamentals and Applications (New York: Taylor Francis) pp115-125

    [8]

    Yang C Y 1999 Appl. Math. Model. 23 469

    [9]

    Pedro H A N, Helcio R B O, Jean L B 2011 Int. Commun. Heat Mass Trans. 38 1172

    [10]

    Zhuang Q, Yu B, Jiang X Y 2015 Physica B 456 9

    [11]

    El-Adawi M K, Abdel-Naby M A, Shalaby S A 1995 Int. J. Heat Mass Transfer 38 947

    [12]

    Feng L X 2011 The Computational Methods and Applications of Inverse Problems (Harbin: Harbin Institute Technology Press) p9 (in Chinese) [冯立新 2011 反问题的计算方法及应用 (哈尔滨: 哈尔滨工业大学出版社) 第9页]

    [13]

    Abramowitz M, Stegun I 1964 Handbook of Mathematical Functions (New York: Dover Publications) pp297-299

    [14]

    Bi J, Zhang X H, Ni X W 2011 Acta Phys. Sin. 60 114210 (in Chinese) [(in Chinese) 毕娟, 张喜和, 倪晓武 2011 物理学报 60 114210]

  • [1]

    Wang Y, Liu X, Zhang Y G, Gu P F, Li Y Y, Li M Y 2007 Acta Phys. Sin. 56 2382 (in Chinese) [王颖, 刘旭, 章岳光, 顾培夫, 厉以宇, 李明宇 2007 物理学报 56 2382]

    [2]

    Zhao Y A, Wang T, Zhang D P, He H B, Shao J D, Fan Z X 2005 Acta Phot. Sin. 34 1372 (in Chinese) [赵元安, 王涛, 张东平, 贺洪波, 邵建达, 范正修 2005 光子学报 34 1372]

    [3]

    Wang B 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王斌 2012 博士学位论文(南京: 南京理工大学)]

    [4]

    Wang B, Dai G, Zhang H C, Ni X W, Shen Z H, Lu J 2011 Appl. Surf. Sci. 257 9977

    [5]

    Wang B, Zhang H C, Qin Y, Wang X, Ni X W, Shen Z H, Lu J 2011 Appl. Opt. 50 3435

    [6]

    Sun J Y 2007 M. S. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [孙金英 2007 硕士学位论文 (南京: 南京理工大学)]

    [7]

    Ozisik M N, Orlande H R B 2000 Inverse Heat Transfer: Fundamentals and Applications (New York: Taylor Francis) pp115-125

    [8]

    Yang C Y 1999 Appl. Math. Model. 23 469

    [9]

    Pedro H A N, Helcio R B O, Jean L B 2011 Int. Commun. Heat Mass Trans. 38 1172

    [10]

    Zhuang Q, Yu B, Jiang X Y 2015 Physica B 456 9

    [11]

    El-Adawi M K, Abdel-Naby M A, Shalaby S A 1995 Int. J. Heat Mass Transfer 38 947

    [12]

    Feng L X 2011 The Computational Methods and Applications of Inverse Problems (Harbin: Harbin Institute Technology Press) p9 (in Chinese) [冯立新 2011 反问题的计算方法及应用 (哈尔滨: 哈尔滨工业大学出版社) 第9页]

    [13]

    Abramowitz M, Stegun I 1964 Handbook of Mathematical Functions (New York: Dover Publications) pp297-299

    [14]

    Bi J, Zhang X H, Ni X W 2011 Acta Phys. Sin. 60 114210 (in Chinese) [(in Chinese) 毕娟, 张喜和, 倪晓武 2011 物理学报 60 114210]

  • [1] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [2] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [3] 侯晴宇, 巩晋南, 樊志鹏, 王一惠. 在轨空间目标光学特性宏观表征模型的反演重构. 物理学报, 2017, 66(15): 154201. doi: 10.7498/aps.66.154201
    [4] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [5] 邓发明, 高涛, 沈艳红, 龚艳蓉. 强激光辐照对3C-SiC晶体结构稳定性的影响. 物理学报, 2015, 64(4): 046301. doi: 10.7498/aps.64.046301
    [6] 黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪. 激光二极管抽运氦气冷却钕玻璃叠片激光放大器热致波前畸变和应力双折射的数值模拟和实验研究. 物理学报, 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [7] 胡淼, 张慧, 张飞, 刘晨曦, 徐国蕊, 邓晶, 黄前锋. 用于光生毫米波的双频微片激光器热致频差特性研究. 物理学报, 2013, 62(20): 204205. doi: 10.7498/aps.62.204205
    [8] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [9] 刘海强, 过振, 王石语, 林林, 郭龙成, 李兵斌, 蔡德芳. 二极管端面抽运固体激光器晶体棒与热沉接触热导研究. 物理学报, 2011, 60(1): 014212. doi: 10.7498/aps.60.014212
    [10] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [11] 赵艳, 蒋毅坚. ZnO薄膜的激光辐照效应研究. 物理学报, 2010, 59(4): 2679-2684. doi: 10.7498/aps.59.2679
    [12] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应. 物理学报, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [13] 常雷, 蒋毅坚. La0.67Ba0.33MnO3薄膜的激光辐照效应研究. 物理学报, 2009, 58(3): 1997-2001. doi: 10.7498/aps.58.1997
    [14] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [15] 王立世, 潘春旭, 蔡启舟, 魏伯康. 等离子体电解氧化过程中单个稳态微放电的热效应研究. 物理学报, 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [16] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征. 物理学报, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [17] 牛燕雄, 禹 烨, 段晓峰, 张 鹏, 武东生, 王秀生. 多脉冲激光对胶合透镜热破坏效应研究. 物理学报, 2006, 55(9): 4478-4482. doi: 10.7498/aps.55.4478
    [18] 牛燕雄, 黄 峰, 段晓峰, 汪岳峰, 张 鹏, 何琛娟, 禹 晔, 姚建铨. 脉冲激光对类金刚石(DLC)薄膜的热冲击效应研究. 物理学报, 2005, 54(10): 4816-4821. doi: 10.7498/aps.54.4816
    [19] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [20] 郑瑞伦, 陈洪, 刘俊. 矩形激光脉冲辐照下金属板材料温度分布研究. 物理学报, 2002, 51(3): 554-558. doi: 10.7498/aps.51.554
计量
  • 文章访问数:  5735
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-06-05

/

返回文章
返回