搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光辐照对3C-SiC晶体结构稳定性的影响

邓发明 高涛 沈艳红 龚艳蓉

引用本文:
Citation:

强激光辐照对3C-SiC晶体结构稳定性的影响

邓发明, 高涛, 沈艳红, 龚艳蓉

Effect of intense laser irradiation on the structural stability of 3C-SiC

Deng Fa-Ming, Gao Tao, Shen Yan-Hong, Gong Yan-Rong
PDF
导出引用
  • 使用基于密度泛函微扰理论的线性响应方法, 模拟研究了强激光辐照对闪锌矿结构的碳化硅晶体结构稳定性的影响. 通过计算在不同电子温度下3C-SiC晶体的声子色散曲线, 发现3C-SiC的横声学声子频率随电子温度的升高会出现虚频, 其临界电子温度是3.395 eV. 结果表明, 在强激光辐照下3C-SiC 晶体变得不稳定, 这与以前对金刚石结构的碳、硅和闪锌矿结构的砷化镓、锑化铟的研究结果非常类似. 电子温度在0–4.50 eV 范围内时, 3C-SiC晶体在Γ 点的LO-TO分裂度随电子温度的升高而增大, 超过4.50 eV后随电子温度的升高而减小. 这表明只有在足够强的激光辐照下, 电子激发才会削弱晶体的离子性强度.
    Using the linear response method based on the density functional perturbation theory, we simulate the effect of intense laser irradiation on the zinc-blende structural stability of silicon carbide crystal. By calculating the phonon dispersion curves for the 3C-SiC crystal of the zinc-blende structure at different electronic temperatures, we find that the transverse acoustic phonon frequencies of 3C-SiC become imaginary as the electron temperature increases. The critical electronic temperature is 3.395 eV. This means that the lattices of 3C-SiC become unstable under the intense laser irradiation. These results are very similar to the previous results for the diamond structure(C and Si) and the zinc-blende structure (GaAs and InSb). In an electron temperature range of 0-4.50 eV, the LO-TO splitting at Γ gradually increases with the increase of electronic temperature. When the electron temperature is beyond 4.50 eV, the splitting decreases. The results indicate that only under the intense enough laser irradiation, the ionic strength can be weakened by the electronic excitation.
    • 基金项目: 国家科技支撑计划(批准号: 2014GB111001, 2014GB125000)资助的课题.
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2014GB111001, 2014GB125000).
    [1]

    van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422

    [2]

    Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [3]

    Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A 66 587

    [4]

    Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108

    [5]

    Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023

    [6]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806

    [7]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 7 3149

    [8]

    Recoules V, Clérouin J, Zérah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503

    [9]

    Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Töws W, Garcia M E 2008 Appl. Phys. B 93 743

    [10]

    Deng X C, Sun H, Rao C Y, Zhang B 2013 Chin. Phys. B 22 017302

    [11]

    Song Q W, Zhang Y M, Han J, Tanner S P, Dimitrijev S, Zhang Y M, Tang X Y, Guo H 2013 Chin. Phys. B 22 027302

    [12]

    Liu L, Yang Y T, Ma X H 2011 Chin. Phys. B 20 127204

    [13]

    Zheng L, Zhang F, Liu S B, Dong L, Liu X F, Fan Z C, Liu B, Yan G G, Wang L, Zhao W S, Sun G S, He Z, Yang F H 2013 Chin. Phys. B 22 097302

    [14]

    Liu Z L 2009 Power Electron. 6 10 (in Chinese) [刘忠立 2009 电力电子 6 10]

    [15]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103 (in Chinese) [高尚鹏, 祝桐 2012 物理学报 61 137103]

    [16]

    L M Y, Chen Z W, Li L X, Liu R P, Wang W K 2006 Acta Phys. Sin. 55 3576 (in Chinese) [吕梦雅, 陈洲文, 李立新, 刘日平, 王文魁 2006 物理学报 55 3576]

    [17]

    Zhou P L, Zheng S K, Tian Y, Zhang S M, Shi R Q, He J F, Yan X B 2014 Acta Phys. Sin. 63 053102 (in Chinese) [周鹏力, 郑树凯, 田言, 张朔铭, 史茹倩, 何静芳, 闫小兵 2014 物理学报 63 053102]

    [18]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [19]

    Troullier N, Martins J L 1990 Solid State Commun. 74 613

    [20]

    Ashcroft N W, Mermin N D 1976 Solid State Physic (Independence Ky: Thomson Learning Inc) p81

    [21]

    Käckell P, Wenzien B, Bechstedt F 1994 Phys. Rev. B 50 10761

    [22]

    Choyke W J, Hamilton D R, Patrick L 1964 Phys. Rev. 133 A1163

    [23]

    Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301

    [24]

    Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360

    [25]

    Poate J M, Brown W L 1982 Phys. Today 35 24

    [26]

    Feldman D W, Parker J H, Choyke W J, Patrick L 1968 Phys. Rev. 173 787

    [27]

    Olego D, Cardona M 1982 Phys. Rev. B 25 1151

    [28]

    Olego D, Cardona M, Vogl P 1982 Phys. Rev. B 25 3878

    [29]

    Karch K, Pavone P, Windl W, Schtt O, Strauch D 1994 Phys. Rev. B 50 17054

    [30]

    Serrano J, Strempfer J, Cardona M, Schwoerer-Böhning M, Requardt H, Lorenzen M, Stojetz B, Pavone P, Choyke W J 2002 Appl. Phys. Lett. 80 4360

    [31]

    Huang K, Han R Q 1988 Solid State Physics (1st Ed.) (Beijing: Higher Education Press) pp63-107 (in Chinese) [黄昆, 韩汝琦1988固体物理学 (第一版) (北京:高等教育出版社) 第63–107页]

    [32]

    Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104

  • [1]

    van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422

    [2]

    Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [3]

    Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A 66 587

    [4]

    Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108

    [5]

    Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023

    [6]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806

    [7]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 7 3149

    [8]

    Recoules V, Clérouin J, Zérah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503

    [9]

    Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Töws W, Garcia M E 2008 Appl. Phys. B 93 743

    [10]

    Deng X C, Sun H, Rao C Y, Zhang B 2013 Chin. Phys. B 22 017302

    [11]

    Song Q W, Zhang Y M, Han J, Tanner S P, Dimitrijev S, Zhang Y M, Tang X Y, Guo H 2013 Chin. Phys. B 22 027302

    [12]

    Liu L, Yang Y T, Ma X H 2011 Chin. Phys. B 20 127204

    [13]

    Zheng L, Zhang F, Liu S B, Dong L, Liu X F, Fan Z C, Liu B, Yan G G, Wang L, Zhao W S, Sun G S, He Z, Yang F H 2013 Chin. Phys. B 22 097302

    [14]

    Liu Z L 2009 Power Electron. 6 10 (in Chinese) [刘忠立 2009 电力电子 6 10]

    [15]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103 (in Chinese) [高尚鹏, 祝桐 2012 物理学报 61 137103]

    [16]

    L M Y, Chen Z W, Li L X, Liu R P, Wang W K 2006 Acta Phys. Sin. 55 3576 (in Chinese) [吕梦雅, 陈洲文, 李立新, 刘日平, 王文魁 2006 物理学报 55 3576]

    [17]

    Zhou P L, Zheng S K, Tian Y, Zhang S M, Shi R Q, He J F, Yan X B 2014 Acta Phys. Sin. 63 053102 (in Chinese) [周鹏力, 郑树凯, 田言, 张朔铭, 史茹倩, 何静芳, 闫小兵 2014 物理学报 63 053102]

    [18]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [19]

    Troullier N, Martins J L 1990 Solid State Commun. 74 613

    [20]

    Ashcroft N W, Mermin N D 1976 Solid State Physic (Independence Ky: Thomson Learning Inc) p81

    [21]

    Käckell P, Wenzien B, Bechstedt F 1994 Phys. Rev. B 50 10761

    [22]

    Choyke W J, Hamilton D R, Patrick L 1964 Phys. Rev. 133 A1163

    [23]

    Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301

    [24]

    Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360

    [25]

    Poate J M, Brown W L 1982 Phys. Today 35 24

    [26]

    Feldman D W, Parker J H, Choyke W J, Patrick L 1968 Phys. Rev. 173 787

    [27]

    Olego D, Cardona M 1982 Phys. Rev. B 25 1151

    [28]

    Olego D, Cardona M, Vogl P 1982 Phys. Rev. B 25 3878

    [29]

    Karch K, Pavone P, Windl W, Schtt O, Strauch D 1994 Phys. Rev. B 50 17054

    [30]

    Serrano J, Strempfer J, Cardona M, Schwoerer-Böhning M, Requardt H, Lorenzen M, Stojetz B, Pavone P, Choyke W J 2002 Appl. Phys. Lett. 80 4360

    [31]

    Huang K, Han R Q 1988 Solid State Physics (1st Ed.) (Beijing: Higher Education Press) pp63-107 (in Chinese) [黄昆, 韩汝琦1988固体物理学 (第一版) (北京:高等教育出版社) 第63–107页]

    [32]

    Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104

计量
  • 文章访问数:  1949
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-07
  • 修回日期:  2014-09-17
  • 刊出日期:  2015-02-05

强激光辐照对3C-SiC晶体结构稳定性的影响

  • 1. 四川民族学院数学系, 康定 626001;
  • 2. 四川大学原子与分子物理研究所, 成都 610065
    基金项目: 国家科技支撑计划(批准号: 2014GB111001, 2014GB125000)资助的课题.

摘要: 使用基于密度泛函微扰理论的线性响应方法, 模拟研究了强激光辐照对闪锌矿结构的碳化硅晶体结构稳定性的影响. 通过计算在不同电子温度下3C-SiC晶体的声子色散曲线, 发现3C-SiC的横声学声子频率随电子温度的升高会出现虚频, 其临界电子温度是3.395 eV. 结果表明, 在强激光辐照下3C-SiC 晶体变得不稳定, 这与以前对金刚石结构的碳、硅和闪锌矿结构的砷化镓、锑化铟的研究结果非常类似. 电子温度在0–4.50 eV 范围内时, 3C-SiC晶体在Γ 点的LO-TO分裂度随电子温度的升高而增大, 超过4.50 eV后随电子温度的升高而减小. 这表明只有在足够强的激光辐照下, 电子激发才会削弱晶体的离子性强度.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回