搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3C-SiC薄膜小角晶界附近位错核心的原子组态研究

崔彦祥 王玉梅 李方华

引用本文:
Citation:

3C-SiC薄膜小角晶界附近位错核心的原子组态研究

崔彦祥, 王玉梅, 李方华

Atomic configurations of dislocation cores in a small-angle grain boundary of 3C-SiC film

Cui Yan-Xiang, Wang Yu-Mei, Li Fang-Hua
PDF
导出引用
  • 用LaB6灯丝200 kV高分辨透射电镜拍摄了有小角晶界的3C-SiC/(001)Si 薄膜的[110]高分辨电子显微像. 用像解卷技术把本不直接反映晶体结构的实验像转化为结构像. 首先, 从完整区的结构像中分辨开间距仅为0.109 nm的Si和C原子柱; 随后按赝弱相位物体近似像衬理论, 分析像衬随晶体厚度的变化规律, 辨认出Si和C原子; 进而在原子水平上得出小角晶界附近两个复合位错的核心结构, 构建了结构模型并计算了模拟像. 实验像与模拟像的一致程度验证了结构模型的正确性. 于是, 在已知完整晶体结构的前提下, 仅从一帧实验高分辨像出发, 推演出原子的种类和位错核心的原子组态. 还讨论了3C-SiC 小角晶界的形成与晶界附近出现复合位错的关系.
    [110] images are taken for 3C-SiC/(001)Si hetero epitaxial films containing small-angle grain boundaries by using a 200 kV LaB6 filament high-resolution transmission electron microscope. Deconvolution processing is performed to transform the experimental images which do not represent intuitively the projected crystal structure into structure images. First, Si and C atomic columns with a distance of 0.109 nm are resolved in a perfect structure image region, and then recognized from each other by analyzing the image contrast change with sample thickness based on the pseudo-weak phase object approximation. Subsequently, two complex dislocation cores located in the vicinity of small-angle grain boundaries are obtained at an atomic level, and the atomic structure models are constructed and confirmed by matching the experimental images with the simulated ones. Hence, the atomic configurations of dislocation cores are derived from only a single experimental image with the average structure of perfect crystal known in advance. The formation of small-angle grain boundaries in 3C-SiC/Si with the occurence of complex dislocations in their vicinity is discussed.
    • 基金项目: 国家自然科学基金(批准号: 11474329)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474329).
    [1]

    Nishino S, Powell J A, Will H A 1983 Appl. Phys. Lett. 42 460

    [2]

    Davis R F, Kelner G, Shur M, Palmour J W, Edmond J A 1991 Proc. IEEE 79 677

    [3]

    Inamoto S, Yamasaki J, Tamaki H, Tanaka N 2011 Philos. Mag. Lett. 91 632

    [4]

    Yamasaki J, Inamoto S, Nomura Y, Tamaki H, Tanaka N 2012 J. Phys. D: Appl. Phys. 45 494002

    [5]

    Cowley J M, Iijma S 1972 Z. Naturforsch. A 27 445

    [6]

    Uyeda N, Kobayash T, Suito E, Harada Y, Watanabe M 1972 J. Appl. Phys. 43 5181

    [7]

    Izui K, Furuno S, Nishida T, Otsu H 1978-79 Chem. Scr. 14 99

    [8]

    Amelinckx S 1978-79 Chem. Scr. 14 197

    [9]

    Shen X, Cheng D, Zhao H F, Yao Y, Liu X Y, Yu R C 2013 Chin. Phys. B 22 116102

    [10]

    Ichinose H 2000 Sci. Technol. Adv. Mat. 1 11

    [11]

    Chen J H, Zandbergen H W, van Dyck D 2004 Ultramicroscopy 98 81

    [12]

    Heuer A H, Jia C L, Lagerlöf K P D 2010 Science 330 1227

    [13]

    Schiske P 1968 Proceedings of the 4th European Regional Conference on Electron Microscopy Rome, Italy, September 1-7, 1968 p145

    [14]

    Kirkland E J 1984 Ultramicroscopy 15 151

    [15]

    Saxton W O 1986 Proceedings of the 11th International Congress on Electron Microscopy Kyoto, Japan, August 31-September 7, 1986 p26

    [16]

    Thust A, Coene W M J, Op de Beeck M, van Dyck D 1996 Ultramicroscopy 64 211

    [17]

    Hsieh W K, Chen F R, Kai J J, Kirkland A I 2004 Ultramicroscopy 98 99

    [18]

    Li F H, Fan H F 1979 Acta Phys. Sin. 28 276 (in Chinese) [李方华, 范海福 1979 物理学报 28 276]

    [19]

    Han F S, Fan H F, Li F H 1986 Acta Crystallogr. A 42 353

    [20]

    Li F H 2005 Sci. Technol. Adv. Mat. 6 755

    [21]

    Li F H 2010 Phys. Stat. Sol. A 207 2639

    [22]

    He W Z, Li F H, Chen H, Kawasaki K, Oikawa T 1997 Ultramicroscopy 70 1

    [23]

    Shiojiri M, Kaito C, Sekimoto S, Nakamura N 1982 Philos. Mag. A 46 495

    [24]

    Wang D, Li F H, Zou J 2000 Ultramicroscopy 85 131

    [25]

    Wang D, Chen H, Li F H, Kawasaki K, Oikawa T 2002 Ultramicroscopy 93 139

    [26]

    Wang D, Zou J, He W Z, Chen H, Li F H, Kawasaki K, Oikawa T 2004 Ultramicroscopy 98 259

    [27]

    Tang C Y, Li F H, Wang R, Zou J, Zheng X H, Liang J W 2007 Phys. Rev. B 75 184103

    [28]

    Wen C, Wang Y M, Wan W, Li F H, Liang J W, Zou J 2009 J. Appl. Phys. 106 073522

    [29]

    Wen C, Li F H, Zou J, Chen H 2010 Acta Phys. Sin. 59 1928 (in Chinese) [温才, 李方华, 邹进, 陈弘 2010 物理学报 59 1928]

    [30]

    Wan W, Tang C Y, Wang Y M, Li F H 2005 Acta Phys. Sin. 54 4273 (in Chinese) [万威, 唐春艳, 王玉梅, 李方华 2005 物理学报 54 4273]

    [31]

    Cui Y X, Wang Y M, Wen C, Ge B H, Li F H, Chen Y, Chen H 2013 Ultramicroscopy 126 77

    [32]

    Li F H 2009 Electron Crystallography and Image Processing (Shanghai: Shanghai Scientific and Technical Publishers) pp259-386 (in Chinese) [李方华 2009 电子晶体学与图像处理 (上海: 上海科学技术出版社) 第259–386页]

    [33]

    Thon F 1966 Z. Naturforsch. A 21 476

    [34]

    Li F H, Wang D, He W Z, Jiang H 2000 J. Electron Microsc. 49 17

    [35]

    Li F H, Tang D 1985 Acta Cryst. A41 376

    [36]

    Tang C Y, Li F H 2005 J. Electron Microsc. 54 445

    [37]

    Cowley J M, Moodie A F 1957 Acta Cryst. 10 609

  • [1]

    Nishino S, Powell J A, Will H A 1983 Appl. Phys. Lett. 42 460

    [2]

    Davis R F, Kelner G, Shur M, Palmour J W, Edmond J A 1991 Proc. IEEE 79 677

    [3]

    Inamoto S, Yamasaki J, Tamaki H, Tanaka N 2011 Philos. Mag. Lett. 91 632

    [4]

    Yamasaki J, Inamoto S, Nomura Y, Tamaki H, Tanaka N 2012 J. Phys. D: Appl. Phys. 45 494002

    [5]

    Cowley J M, Iijma S 1972 Z. Naturforsch. A 27 445

    [6]

    Uyeda N, Kobayash T, Suito E, Harada Y, Watanabe M 1972 J. Appl. Phys. 43 5181

    [7]

    Izui K, Furuno S, Nishida T, Otsu H 1978-79 Chem. Scr. 14 99

    [8]

    Amelinckx S 1978-79 Chem. Scr. 14 197

    [9]

    Shen X, Cheng D, Zhao H F, Yao Y, Liu X Y, Yu R C 2013 Chin. Phys. B 22 116102

    [10]

    Ichinose H 2000 Sci. Technol. Adv. Mat. 1 11

    [11]

    Chen J H, Zandbergen H W, van Dyck D 2004 Ultramicroscopy 98 81

    [12]

    Heuer A H, Jia C L, Lagerlöf K P D 2010 Science 330 1227

    [13]

    Schiske P 1968 Proceedings of the 4th European Regional Conference on Electron Microscopy Rome, Italy, September 1-7, 1968 p145

    [14]

    Kirkland E J 1984 Ultramicroscopy 15 151

    [15]

    Saxton W O 1986 Proceedings of the 11th International Congress on Electron Microscopy Kyoto, Japan, August 31-September 7, 1986 p26

    [16]

    Thust A, Coene W M J, Op de Beeck M, van Dyck D 1996 Ultramicroscopy 64 211

    [17]

    Hsieh W K, Chen F R, Kai J J, Kirkland A I 2004 Ultramicroscopy 98 99

    [18]

    Li F H, Fan H F 1979 Acta Phys. Sin. 28 276 (in Chinese) [李方华, 范海福 1979 物理学报 28 276]

    [19]

    Han F S, Fan H F, Li F H 1986 Acta Crystallogr. A 42 353

    [20]

    Li F H 2005 Sci. Technol. Adv. Mat. 6 755

    [21]

    Li F H 2010 Phys. Stat. Sol. A 207 2639

    [22]

    He W Z, Li F H, Chen H, Kawasaki K, Oikawa T 1997 Ultramicroscopy 70 1

    [23]

    Shiojiri M, Kaito C, Sekimoto S, Nakamura N 1982 Philos. Mag. A 46 495

    [24]

    Wang D, Li F H, Zou J 2000 Ultramicroscopy 85 131

    [25]

    Wang D, Chen H, Li F H, Kawasaki K, Oikawa T 2002 Ultramicroscopy 93 139

    [26]

    Wang D, Zou J, He W Z, Chen H, Li F H, Kawasaki K, Oikawa T 2004 Ultramicroscopy 98 259

    [27]

    Tang C Y, Li F H, Wang R, Zou J, Zheng X H, Liang J W 2007 Phys. Rev. B 75 184103

    [28]

    Wen C, Wang Y M, Wan W, Li F H, Liang J W, Zou J 2009 J. Appl. Phys. 106 073522

    [29]

    Wen C, Li F H, Zou J, Chen H 2010 Acta Phys. Sin. 59 1928 (in Chinese) [温才, 李方华, 邹进, 陈弘 2010 物理学报 59 1928]

    [30]

    Wan W, Tang C Y, Wang Y M, Li F H 2005 Acta Phys. Sin. 54 4273 (in Chinese) [万威, 唐春艳, 王玉梅, 李方华 2005 物理学报 54 4273]

    [31]

    Cui Y X, Wang Y M, Wen C, Ge B H, Li F H, Chen Y, Chen H 2013 Ultramicroscopy 126 77

    [32]

    Li F H 2009 Electron Crystallography and Image Processing (Shanghai: Shanghai Scientific and Technical Publishers) pp259-386 (in Chinese) [李方华 2009 电子晶体学与图像处理 (上海: 上海科学技术出版社) 第259–386页]

    [33]

    Thon F 1966 Z. Naturforsch. A 21 476

    [34]

    Li F H, Wang D, He W Z, Jiang H 2000 J. Electron Microsc. 49 17

    [35]

    Li F H, Tang D 1985 Acta Cryst. A41 376

    [36]

    Tang C Y, Li F H 2005 J. Electron Microsc. 54 445

    [37]

    Cowley J M, Moodie A F 1957 Acta Cryst. 10 609

  • [1] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [2] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [3] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [4] 邓发明, 高涛, 沈艳红, 龚艳蓉. 强激光辐照对3C-SiC晶体结构稳定性的影响. 物理学报, 2015, 64(4): 046301. doi: 10.7498/aps.64.046301
    [5] 周鹏力, 郑树凯, 田言, 张朔铭, 史茹倩, 何静芳, 闫小兵. Al-N共掺杂3C-SiC介电性质的第一性原理计算. 物理学报, 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [6] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究. 物理学报, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [7] 王如志, 徐利春, 严辉, 香山正宪. 含扭转晶界位错Al金属拉伸强度第一性原理预测. 物理学报, 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [8] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [9] 成鹏飞, 李盛涛, 李建英. ZnO-Bi2O3系压敏陶瓷的晶界电子结构. 物理学报, 2010, 59(1): 560-565. doi: 10.7498/aps.59.560
    [10] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [11] 温才, 李方华, 邹进, 陈弘. AlSb/GaAs(001)失配位错的高分辨电子显微学研究. 物理学报, 2010, 59(3): 1928-1937. doi: 10.7498/aps.59.1928
    [12] 刘福, 周继承, 谭晓超. 3C-SiC(001)-(2×1)表面原子与电子结构研究. 物理学报, 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [13] 吕梦雅, 陈洲文, 李立新, 刘日平, 王文魁. 3C-SiC高压相变的理论研究. 物理学报, 2006, 55(7): 3576-3580. doi: 10.7498/aps.55.3576
    [14] 万 威, 唐春艳, 王玉梅, 李方华. GaN晶体中堆垛层错的高分辨电子显微像研究. 物理学报, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [15] 林洪峰, 谢二庆, 马紫微, 张 军, 彭爱华, 贺德衍. 射频溅射法制备3C-SiC和4H-SiC薄膜. 物理学报, 2004, 53(8): 2780-2785. doi: 10.7498/aps.53.2780
    [16] 张国英, 刘贵立, 曾梅光, 钱存富. 钢中小角度晶界区的电子结构及掺杂效应. 物理学报, 2000, 49(7): 1344-1347. doi: 10.7498/aps.49.1344
    [17] 张玉明, 张义门, 崔杰, 罗晋生. 3C-SiC体特性的Monte Carlo模型. 物理学报, 1997, 46(11): 2215-2222. doi: 10.7498/aps.46.2215
    [18] 李宗全, 张立德, 何怡贞. 六角结构金属α—Ti中的小角晶界. 物理学报, 1985, 34(8): 1064-1067. doi: 10.7498/aps.34.1064
    [19] 葛传珍, 王有涛, 王建文, 冯端. LiNbO3和LiTaO3单晶体中亚晶界位错结构的研究. 物理学报, 1983, 32(11): 1361-1368. doi: 10.7498/aps.32.1361
    [20] 冯端, 李齐, 闵乃本. 钼单晶体中亚晶界位错结构的研究. 物理学报, 1965, 21(2): 431-449. doi: 10.7498/aps.21.431
计量
  • 文章访问数:  3110
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-22
  • 修回日期:  2014-10-16
  • 刊出日期:  2015-02-05

3C-SiC薄膜小角晶界附近位错核心的原子组态研究

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190
    基金项目: 国家自然科学基金(批准号: 11474329)资助的课题.

摘要: 用LaB6灯丝200 kV高分辨透射电镜拍摄了有小角晶界的3C-SiC/(001)Si 薄膜的[110]高分辨电子显微像. 用像解卷技术把本不直接反映晶体结构的实验像转化为结构像. 首先, 从完整区的结构像中分辨开间距仅为0.109 nm的Si和C原子柱; 随后按赝弱相位物体近似像衬理论, 分析像衬随晶体厚度的变化规律, 辨认出Si和C原子; 进而在原子水平上得出小角晶界附近两个复合位错的核心结构, 构建了结构模型并计算了模拟像. 实验像与模拟像的一致程度验证了结构模型的正确性. 于是, 在已知完整晶体结构的前提下, 仅从一帧实验高分辨像出发, 推演出原子的种类和位错核心的原子组态. 还讨论了3C-SiC 小角晶界的形成与晶界附近出现复合位错的关系.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回