搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlSb/GaAs(001)失配位错的高分辨电子显微学研究

温才 李方华 邹进 陈弘

引用本文:
Citation:

AlSb/GaAs(001)失配位错的高分辨电子显微学研究

温才, 李方华, 邹进, 陈弘

High-resolution electron microscopy of misfit dislocations in AlSb/GaAs(001) system

Wen Cai, Li Fang-Hua, Zou Jin, Chen Hong
PDF
导出引用
  • 用200 kV 六硼化镧光源的高分辨透射电子显微镜观察了AlSb/GaAs(001)外延薄膜的失配位错,结合解卷处理方法把[110]高分辨电子显微像转换为试样的结构投影图,其分辨率接近电子显微镜的信息极限.根据赝弱相位物体近似像衬理论,通过分析AlSb薄膜完整区解卷像的衬度随试样厚度的变化,确定了哑铃原子对中Al和Sb原子的位置.在此基础上构建出失配位错的结构模型,再结合模拟像与实验像的匹配,确定了AlAs型界面以及Lomer和60°两类失配全位错的核心结构.
    The detailed core structures of misfit dislocations in the AlSb/GaAs(001) heterostructure system were studied by 200 kV LaB6 filament high-resolution electron microscope. In combination with image deconvolution, the[110] images were transformed into the projected structure maps, and the image resolution was enhanced up to the information limit of the microscope. To distinguish Al and Sb atoms in the AlSb film, the image contrast change with the sample thickness was analyzed for the perfect region in deconvoluted image, and the positions of Al and Sb atoms in the dumbbells were determined based on the image contrast theory of the pseudo-weak-phase object approximation. Then the structure models of two types of misfit dislocations were constructed. As the simulated images are in good agreement with the experimental images, the AlAs type interface and the core structures of obtained Lomer and 60° misfit dislocations were determined.
    • 基金项目: 国家自然科学基金(批准号:50672124)资助的课题.
    [1]

    [1]Kroemer H 2004 Physica E 20 196

    [2]

    [2]Subbanna S, Gaines J, Tuttle G, Kroemer H, Chalmers S, English J H 1989 J. Vac. Sci. Technol. B 7 289

    [3]

    [3]Kim H S, Noh Y K, Kim M D, Kwon Y J, Oh J E, Kim Y H, Lee J Y, Kim S G, Chung K S 2007 J. Cryst. Growth 301-302 230[4]Lomer W M 1951 Philos. Mag. 42 1327

    [4]

    [5]Marshall A F, Aubertine D B, Nix W D, McIntyre P C 2005 J. Mater. Res. 20 447

    [5]

    [6]Tillmann K, Houben L, Thust A 2006 Philos. Mag. 86 4589

    [6]

    [7]Qian W, Skowronski M, Kaspi R, de Graef M, Dravid V P 1997 J. Appl. Phys. 81 7268

    [7]

    [8]Jallipalli A, Balakrishnan G, Huang S H, Khoshakhlagh A, Dawson L R, Huffaker D L 2007 J. Cryst. Growth 303 449

    [8]

    [9]Trampert A, Tournie E, Ploog K H 1995 Appl. Phys. Lett. 66 2265

    [9]

    ]Chen F R, Kai J J, Chang L, Wang J Y, Chen W J 1999 J. Electron Microsc. 48 827

    [10]

    ]He W Z, Li F H, Chen H, Kawasaki K, Oikawa T 1997 Ultramicroscopy 70 1

    [11]

    ]Wang D, Zou J, He W Z, Chen H, Li F H, Kawasaki K, Oikawa T 2004 Ultramicroscopy 98 259

    [12]

    ]Wang D, Chen H, Li F H, Kawasaki K, Oikawa T 2002 Ultramicroscopy 93 139

    [13]

    ]Scherzer O 1949 J. Appl. Phys. 20 20

    [14]

    ]Han F S, Fan H F, Li F H 1986 Acta Crystallogr. A 42 353

    [15]

    ]Hu J J, Li F H 1991 Ultramicroscopy 35 339

    [16]

    ]Li F H, Wang D, He W Z, Jiang H 2000 J. Electron Microsc. 49 17

    [17]

    ]Tang C Y, Li F H, Wang R, Zou J, Zheng X H, Liang J W 2007 Phys. Rev. B 75 184103

    [18]

    ]Li F H, Tang D 1985 Acta Crystallogr. A 41 376

    [19]

    ]Thon F 1966 Z. Naturforsch. 210 476

    [20]

    ]Hornstra J 1958 J. Phys. Chem. Solids 5 129

    [21]

    ]Vila A, Cornet A, Morante J R, Ruterana P, Loubradou M, Bonnet R, Gonzalez Y, Gonzalez L 1995 Philos. Mag. A 71 85

    [22]

    ]Lopatin S, Pennycook S J, Narayan J, Duscher G 2002 Appl. Phys. Lett. 81 2728

    [23]

    ]Hull D, Bacon D J 2001 Introduction to Dislocations (Oxford: Butterworth-Heinemann) p123[25]Zou J, Cockayne D J H 1993 J. Appl. Phys. 74 925

    [24]

    ]Zou J, Cockayne D J H 1993 Appl. Phys. Lett. 63 2222

    [25]

    ]Cowley J M, Moodie A F 1957 Acta Crystallogr. 10 609

  • [1]

    [1]Kroemer H 2004 Physica E 20 196

    [2]

    [2]Subbanna S, Gaines J, Tuttle G, Kroemer H, Chalmers S, English J H 1989 J. Vac. Sci. Technol. B 7 289

    [3]

    [3]Kim H S, Noh Y K, Kim M D, Kwon Y J, Oh J E, Kim Y H, Lee J Y, Kim S G, Chung K S 2007 J. Cryst. Growth 301-302 230[4]Lomer W M 1951 Philos. Mag. 42 1327

    [4]

    [5]Marshall A F, Aubertine D B, Nix W D, McIntyre P C 2005 J. Mater. Res. 20 447

    [5]

    [6]Tillmann K, Houben L, Thust A 2006 Philos. Mag. 86 4589

    [6]

    [7]Qian W, Skowronski M, Kaspi R, de Graef M, Dravid V P 1997 J. Appl. Phys. 81 7268

    [7]

    [8]Jallipalli A, Balakrishnan G, Huang S H, Khoshakhlagh A, Dawson L R, Huffaker D L 2007 J. Cryst. Growth 303 449

    [8]

    [9]Trampert A, Tournie E, Ploog K H 1995 Appl. Phys. Lett. 66 2265

    [9]

    ]Chen F R, Kai J J, Chang L, Wang J Y, Chen W J 1999 J. Electron Microsc. 48 827

    [10]

    ]He W Z, Li F H, Chen H, Kawasaki K, Oikawa T 1997 Ultramicroscopy 70 1

    [11]

    ]Wang D, Zou J, He W Z, Chen H, Li F H, Kawasaki K, Oikawa T 2004 Ultramicroscopy 98 259

    [12]

    ]Wang D, Chen H, Li F H, Kawasaki K, Oikawa T 2002 Ultramicroscopy 93 139

    [13]

    ]Scherzer O 1949 J. Appl. Phys. 20 20

    [14]

    ]Han F S, Fan H F, Li F H 1986 Acta Crystallogr. A 42 353

    [15]

    ]Hu J J, Li F H 1991 Ultramicroscopy 35 339

    [16]

    ]Li F H, Wang D, He W Z, Jiang H 2000 J. Electron Microsc. 49 17

    [17]

    ]Tang C Y, Li F H, Wang R, Zou J, Zheng X H, Liang J W 2007 Phys. Rev. B 75 184103

    [18]

    ]Li F H, Tang D 1985 Acta Crystallogr. A 41 376

    [19]

    ]Thon F 1966 Z. Naturforsch. 210 476

    [20]

    ]Hornstra J 1958 J. Phys. Chem. Solids 5 129

    [21]

    ]Vila A, Cornet A, Morante J R, Ruterana P, Loubradou M, Bonnet R, Gonzalez Y, Gonzalez L 1995 Philos. Mag. A 71 85

    [22]

    ]Lopatin S, Pennycook S J, Narayan J, Duscher G 2002 Appl. Phys. Lett. 81 2728

    [23]

    ]Hull D, Bacon D J 2001 Introduction to Dislocations (Oxford: Butterworth-Heinemann) p123[25]Zou J, Cockayne D J H 1993 J. Appl. Phys. 74 925

    [24]

    ]Zou J, Cockayne D J H 1993 Appl. Phys. Lett. 63 2222

    [25]

    ]Cowley J M, Moodie A F 1957 Acta Crystallogr. 10 609

  • [1] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [2] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [3] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [4] 崔彦祥, 王玉梅, 李方华. 3C-SiC薄膜小角晶界附近位错核心的原子组态研究. 物理学报, 2015, 64(4): 046801. doi: 10.7498/aps.64.046801
    [5] 刘伯飞, 白立沙, 张德坤, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅界面缓冲层对非晶硅锗电池性能的影响. 物理学报, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [6] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [7] 王飞, 刘望, 邓爱红, 朱敬军, 安竹, 汪渊. 界面对ZrN/TaN纳米多层膜固氦性能的影响. 物理学报, 2013, 62(18): 186801. doi: 10.7498/aps.62.186801
    [8] 孙志, 王暄, 韩柏, 宋伟, 张冬, 郭翔宇, 雷清泉. 静电力显微镜研究二相材料及其界面介电特性. 物理学报, 2013, 62(3): 030703. doi: 10.7498/aps.62.030703
    [9] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [10] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [11] 张宪刚, 宗亚平, 王明涛, 吴艳. 晶粒生长演变相场法模拟界面表达的物理模型. 物理学报, 2011, 60(6): 068201. doi: 10.7498/aps.60.068201
    [12] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究. 物理学报, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [13] 刘贵立, 杨忠华, 方戈亮. 镁/镀镍碳纳米管界面特性电子理论研究. 物理学报, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [14] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [15] 杨杭生, 谢英俊. 立方氮化硼薄膜生长过程中的界面控制. 物理学报, 2007, 56(9): 5400-5407. doi: 10.7498/aps.56.5400
    [16] 刘贵立, 郭玉福, 李荣德. ZA27/CNT界面特性电子理论研究. 物理学报, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [17] 唐远河, 解光勇, 刘汉臣, 邵建斌, 马 琦, 刘会平, 宁 辉, 杨 彧, 严成海. 基于粒子成像测速技术的水中气泡界面的光学性质研究. 物理学报, 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [18] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [19] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [20] 万 威, 唐春艳, 王玉梅, 李方华. GaN晶体中堆垛层错的高分辨电子显微像研究. 物理学报, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
计量
  • 文章访问数:  8330
  • PDF下载量:  1324
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-21
  • 修回日期:  2009-12-29
  • 刊出日期:  2010-03-15

AlSb/GaAs(001)失配位错的高分辨电子显微学研究

  • 1. (1)Centre for Microscopy and Microanalysis and Materials Engineering,The University of Queensland,St. Lucia Queensland 4072,Australia; (2)中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190
    基金项目: 国家自然科学基金(批准号:50672124)资助的课题.

摘要: 用200 kV 六硼化镧光源的高分辨透射电子显微镜观察了AlSb/GaAs(001)外延薄膜的失配位错,结合解卷处理方法把[110]高分辨电子显微像转换为试样的结构投影图,其分辨率接近电子显微镜的信息极限.根据赝弱相位物体近似像衬理论,通过分析AlSb薄膜完整区解卷像的衬度随试样厚度的变化,确定了哑铃原子对中Al和Sb原子的位置.在此基础上构建出失配位错的结构模型,再结合模拟像与实验像的匹配,确定了AlAs型界面以及Lomer和60°两类失配全位错的核心结构.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回