搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧掺杂3C-SiC的正电子湮没寿命及符合多普勒展宽谱计算

赵逸 张弘弢 力强 汤贤 成国栋

引用本文:
Citation:

氧掺杂3C-SiC的正电子湮没寿命及符合多普勒展宽谱计算

赵逸, 张弘弢, 力强, 汤贤, 成国栋

Positron annihilation lifetime and doppler broadening spectra calculation for oxygen-doped 3C-SiC

ZHAO Yi, ZHANG Hongtao, LI Qiang, TANG Xian, CHENG Guodong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 基于密度泛函理论系统研究了3C-SiC中本征空位缺陷(VC、VSi和VSi+C)及氧相关缺陷(OC、OSi、OCVSi和OSiVC)的形成能。采用双分量密度泛函理论计算了完美3C-SiC超胞及各类缺陷体系的正电子湮没寿命和动量密度分布。理论计算表明,基于meta-GGA泛函得到的正电子湮没寿命较实验观测值偏大,揭示了泛函选择对计算结果的重要影响。通过分析正电子湮没寿命和动量分布发现,正电子湮没谱技术可有效区分本征缺陷与氧掺杂缺陷,结合电子-正电子密度分布分析,揭示了不同电荷态缺陷体系中电子局域化与正电子俘获态的特征差异。计算结果为正电子湮没技术鉴定氧掺杂3C-SiC中的缺陷提供了理论依据。
    Based on density functional theory (DFT), we systematically investigate the formation energies of intrinsic vacancy defects (VC, VSi, and VSi+C) and oxygen-related defects (OC, OSi, OCVSi, and OSiVC) in 3C-SiC. The results indicate that, among the considered defects, all except OC possess neutral or negative charge states, thereby making them suitable for detection via positron annihilation spectroscopy (PAS). Furthermore, we compute the electron–positron density distributions and positron annihilation lifetimes for the perfect 3C-SiC supercell and various defective configurations. It is found that the OSi and OSiVC complexes serve as effective positron trapping centers, leading to the formation of positron trapped states and a notable increase in annihilation lifetimes at the corresponding defect sites. In addition, coincidence Doppler broadening (CDB) spectra, along with the S and W parameters, are calculated for both intrinsic and oxygen-doped point defects (OC, OSi, OCVSi, and OSiVC). The analysis reveals that electron screening effects dominate the annihilation characteristics of the OSi defect, whereas positron localization induced by the vacancy is the predominant contributor in the case of OSiVC. This distinction results in clearly different momentum distributions for these two oxygen-related defects across various charge states. Overall, PAS is demonstrated to be a powerful technique for distinguishing intrinsic vacancy-type defects from oxygen-doped complexes in 3C-SiC. When combined with electron–positron density analysis, it enables a comprehensive understanding of electron localization and positron trapping behavior in defect systems with different charge states. These first-principles results provide a solid theoretical foundation for the identification and characterization of defects in oxygen-doped 3C-SiC using positron annihilation spectroscopy.
  • [1]

    Petti D A, Buongiorno J, Maki J T, Hobbins R R, Miller G K 2003Nucl. Eng. Des. 222 281

    [2]

    Franceschini F, Ruddy F H 2011Silicon Carbide Neutron Detectors (Rijeka:InTech) pp275-296

    [3]

    Jiang W L, Jiao L, Wang H Y 2011J. Am. Ceram. Soc. 94 4127

    [4]

    Fan X J, Ye R Q, Peng Z W, Wang J J, Fan A L, Guo X 2016Nanotechnology 27 255604

    [5]

    Zhang Y M, Zhu L H, Ban Z G, Liu Y X 2012Hard Alloy 29 66(in Chinese)[张雨萌,朱丽慧,班志刚,刘一雄2012硬质合金29 66]

    [6]

    Wang P R, Gou Y Z, Wang H 2020J. Inorg. Mater. 35 525(in Chinese)[王堋人,苟燕子,王浩2020无机材料学报35 525]

    [7]

    Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T 1998Nature 391 773

    [8]

    Ishikawa T 2005Polymeric and Inorganic Fibers:178 109

    [9]

    Rosso E F, Baierle R J 2013Chem. Phys. Lett. 568 140

    [10]

    Gali A, Heringer D, Deák P, Hajnal Z, Frauenheim T, Devaty R P, Choyke W J 2002Phys. Rev. B 66 125208

    [11]

    West R N 1973Adv. Phys. 22 263

    [12]

    Puska M J, Nieminen R M 1994Rev. Mod. Phys. 66 841

    [13]

    Zhang L J, Wang L H, Liu J D, Li Q, Cheng B, Zhang J, An R, Zhao M L, Ye B J 2012Acta Phys. Sin. 61 484(in Chinese)[张丽娟,王力海,刘建党,李强,成斌,张杰,安然,赵明磊,叶邦角2012物理学报61 484]

    [14]

    Zhang H J, Wang D, Chen Z Q, Wang S J, Xu Y M, Luo X H 2008Acta Phys. Sin. 57 7333(in Chinese)[张宏俊,王栋,陈志权,王少阶,徐友明,罗锡辉2008物理学报57 7333]

    [15]

    Zhang L J, Zhang C C, Liao W, Liu J D, Gu B C, Yuan X D, Ye B J 2015Acta Phys. Sin. 64 510(in Chinese)[张丽娟,张传超,廖威,刘建党,谷冰川,袁晓东,叶邦角2015物理学报64 510]

    [16]

    Hao Y P, Chen X L, Cheng B, Kong W, Xu H X, Du H J, Ye B J 2010Acta Phys. Sin. 59 2789(in Chinese)[郝颖萍,陈祥磊,成斌,孔伟,许红霞,杜淮江,叶邦角2010物理学报59 2789]

    [17]

    Huang S J, Zhang W S, Liu J D, Zhang J, Li J, Ye B J 2014Acta Phys. Sin. 63 372(in Chinese)[黄世娟,张文帅,刘建党,张杰,李骏,叶邦角2014物理学报63 372]

    [18]

    Xu H X, Hao Y P, Han R D, Weng H M, Du H J, Ye B J 2011Acta Phys. Sin. 60 712(in Chinese)[许红霞,郝颖萍,韩荣典,翁惠民,杜淮江,叶邦角2011物理学报60 712]

    [19]

    Liu J D 2010Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[刘建党2010博士学位论文(合肥:中国科学技术大学)]

    [20]

    Lam C H, Lam T W, Ling C C, Fung S, Beling C D, Hang D S, Weng H M 2004J. Phys.:Condens. Matter 16 8409

    [21]

    Staab T E M, Puska M J, Nieminen R M, Torpo L M 2001 Materials Science Forum (Zurich:Trans Tech Publications Ltd) p533

    [22]

    Tuomisto F, Makkonen I 2013Rev. Mod. Phys. 85 1583

    [23]

    Brauer G, Anwand W, Coleman P G, Knights A P, Plazaola F, Pacaud Y, Skorupa W, Störmer J, Willutzki P 1996Phys. Rev. B 54 3084

    [24]

    Brauer G, Anwand W, Nicht E-M, Kuriplach J, Šob M, Wagner N, Coleman P G, Puska M J, Korhonen T 1996Phys. Rev. B 54 2512

    [25]

    Kawasuso A, Yoshikawa M, Itoh H, Krause-Rehberg R, Redmann F, Higuchi T, Betsuyaku K 2006Physica B 376 350

    [26]

    Hu X, Koyanagi T, Katoh Y, Wirth B D 2017Phys. Rev. B 95 104103

    [27]

    Kresse G, Hafner J 1993Phys. Rev. B 47 558

    [28]

    Kresse G, Furthmüller J 1996Phys. Rev. B 54 11169

    [29]

    Kresse G, Furthmüller J 1996Comput. Mater. Sci. 6 15

    [30]

    Perdew J P, Wang Y 1992Phys. Rev. B 45 13244

    [31]

    Perdew J P, Kurth S, Zupan A, Blaha P 1999Phys. Rev. Lett. 82 2544

    [32]

    Verma P, Truhlar D G 2017J. Phys. Chem. C 121 7144

    [33]

    Hohenberg P, Kohn W 1964Phys. Rev. 136 B864

    [34]

    Kohn W, Sham L J 1965Phys. Rev. 140 A1133

    [35]

    Blöchl P E 1994Phys. Rev. B 50 17953

    [36]

    Rauch T, Munoz F, Marques M A L, Botti S 2021Phys. Rev. B 104 064105

    [37]

    Zhang H T, Yan L, Tang X, Cheng G D 2024Phys. Lett. A 525 129888

    [38]

    Levinshtein M E, Rumyantsev S L, Shur M S 2001Properties of Advanced Semiconductor Materials:GaN, AlN, InN, BN, SiC, SiGe (John Wiley & Sons, Hoboken) pp96-104

    [39]

    Nieminen R M, Boronski E, Lantto L J 1985Phys. Rev. B 32 1377

    [40]

    Boroński E, Nieminen R M 1986Phys. Rev. B 34 3820

    [41]

    Arponen J, Pajanne E 1979Ann. Phys.121 343

    [42]

    Barbiellini B, Puska M J, Torsti T, Nieminen R M 1995Phys. Rev. B 51 7341

    [43]

    Kuriplach J, Barbiellini B. 2014. 13th International Workshop on Slow Positron Beam Techniques and Applications. Journal of Physics:Conference Series. Munich, Germany, September 15-20, 2013, p180

    [44]

    Boroński E 2010NUKLEONIKA 55 9

    [45]

    Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996Phys. Rev. Lett. 77 2097

    [46]

    Alatalo M, Asoka-Kumar P, Ghosh V J, Nielsen B, Lynn K G, Kruseman A C, Van Veen A, Korhonen T, Puska M J 1998J. Phys. Chem. Solids 59 55

    [47]

    Szpala S, Asoka-Kumar P, Nielsen B, Peng J P, Hayakawa S, Lynn K G, Gossmann H J 1996Phys. Rev. B 54 4722

    [48]

    Kawasuso A, Maekawa M, Betsuyaku K 2010J. Phys. Conf. Ser. 225 012027

    [49]

    Kong W, Xi C Y, Ye B J, Weng H M, Zhou X Y, Han R D 2004Chinese Physics C 28 1234(in Chinese)[孔伟,郗传英,叶邦角,翁惠民,周先意,韩荣典2004高能物理与核物理28 1234]

    [50]

    Liu X G, Deng L, Hu Z H, Li R, Fu Y G, Li G, Wang J 2016Acta Phys. Sin. 65 42(in Chinese)[刘雄国,邓力,胡泽华,李瑞,付元光,李刚,王佳2016物理学报65 42]

    [51]

    Alatalo M, Barbiellini B, Hakala M, Kauppinen H, Korhonen T, Puska M J, Saarinen K, Hautojärvi P, Nieminen R M 1996Phys. Rev. B 54 2397

    [52]

    Makkonen I, Hakala M, Puska M J 2006Phys. Rev. B 73 035103

    [53]

    Tang Z, Toyama T, Nagai Y, Inoue K, Zhu Z Q, Hasegawa M 2008J. Phys.:Condens. Matter 20 445203

    [54]

    Wiktor J, Jomard G, Torrent M, Bertolus M 2013Phys. Rev. B 87 235207

    [55]

    Kawasuso A, Itoh H, Morishita N, Yoshikawa M, Ohshima T, Nashiyama I, Okada S, Okumura H, Yoshida S 1998Appl. Phys. A 67 209

    [56]

    Panda B K, Brauer G, Skorupa W, Kuriplach J 2000Phys. Rev. B 61 15848

    [57]

    Kawasuso A, Maekawa M, Fukaya Y, Yabuuchi A, Mochizuki I 2011Phys. Rev. B 83 100406

  • [1] 郑世姣, 杨文跃, 杨致, 徐利春, 冯琳, 陈波, 薛林. 单层Z-Bi2O2Se本征点缺陷及光电性能. 物理学报, doi: 10.7498/aps.74.20241701
    [2] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算. 物理学报, doi: 10.7498/aps.73.20240754
    [3] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20211434
    [4] 李重阳, 李梦德, 汪美, 李涛, 刘建党, 叶邦角, 陈志权. ZIFs纳米晶体中电子偶素的自旋转换. 物理学报, doi: 10.7498/aps.71.20220305
    [5] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, doi: 10.7498/aps.68.20190128
    [6] 李明阳, 张雷敏, 吕沙沙, 李正操. 离子辐照和氧化对IG-110核级石墨中的点缺陷的影响. 物理学报, doi: 10.7498/aps.68.20190371
    [7] 谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振. 点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战. 物理学报, doi: 10.7498/aps.68.20191043
    [8] 成鹏飞, 王辉, 李盛涛. CaCu3Ti4O12陶瓷的介电特性与弛豫机理. 物理学报, doi: 10.7498/aps.62.057701
    [9] 田玉明, 王凯悦, 李志宏, 朱玉梅, 柴跃生, 曾雨顺, 王强. 高能电子照射对金刚石中缺陷电荷状态的影响. 物理学报, doi: 10.7498/aps.62.188101
    [10] 张雷明, 夏辉. 点缺陷对表面生长动力学标度行为的影响. 物理学报, doi: 10.7498/aps.61.086801
    [11] 吉川, 徐进. 点缺陷对硼掺杂直拉硅单晶p/p+ 外延片中铜沉淀的影响. 物理学报, doi: 10.7498/aps.61.236102
    [12] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, doi: 10.7498/aps.61.117501
    [13] 张艳辉, 李彦龙, 谷月, 晁月盛. 中频磁脉冲处理Fe52Co34Hf7B6Cu1非晶合金的正电子湮没研究. 物理学报, doi: 10.7498/aps.61.167502
    [14] 魏琦, 程营, 刘晓峻. 点缺陷阵列对声子晶体波导定向辐射性能的影响. 物理学报, doi: 10.7498/aps.60.124301
    [15] 晁月盛, 郭红, 高翔宇, 罗丽平, 朱涵娴. 退火处理Fe43Co43Hf7B6Cu1非晶合金的正电子湮没研究. 物理学报, doi: 10.7498/aps.60.017504
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.515
    [17] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, doi: 10.7498/aps.59.4818
    [18] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究. 物理学报, doi: 10.7498/aps.57.3120
    [19] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, doi: 10.7498/aps.57.3636
    [20] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, doi: 10.7498/aps.55.2300
计量
  • 文章访问数:  25
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回