-
基于密度泛函理论系统研究了3C-SiC中本征空位缺陷(VC, VSi和VSi+C)及氧相关缺陷(OC, OSi, OCVSi和OSiVC)的形成能. 采用双分量密度泛函理论计算了完美3C-SiC超胞及各类缺陷体系的正电子湮没寿命和动量密度分布. 理论计算表明, 基于meta-GGA泛函得到的正电子湮没寿命较实验观测值偏大, 揭示了泛函选择对计算结果的重要影响. 通过分析正电子湮没寿命和动量分布发现, 正电子湮没谱技术可有效区分本征缺陷与氧掺杂缺陷, 结合电子-正电子密度分布分析, 揭示了不同电荷态缺陷体系中电子局域化与正电子俘获态的特征差异. 计算结果为正电子湮没技术鉴定氧掺杂3C-SiC中的缺陷提供了理论依据.Based on density functional theory (DFT), the formation energies of intrinsic vacancy defects (VC, VSi, and VSi+C) and oxygen-related defects (OC, OSi, OCVSi, and OSiVC) in 3C-SiC are systematically investigated. The results indicate that all defects considered, except for OC, possess neutral or negative charge states, thereby making them suitable for detection by positron annihilation spectroscopy (PAS). Furthermore, the electron and positron density distributions and positron annihilation lifetimes for the perfect 3C-SiC supercell and various defective configurations are computed. It is found that the OSi and OSiVC complexes act as effective positron trapping centers, leading to the formation of positron trapped states and a notable increase in annihilation lifetimes at the corresponding defect sites. In addition, coincidence Doppler broadening (CDB) spectra, along with the S and W parameters, are calculated for both intrinsic and oxygen-doped point defects (OC, OSi, OCVSi, and OSiVC). The analysis reveals that electron screening effects dominate the annihilation characteristics of the OSi defect, whereas positron localization induced by the vacancy is the predominant contributor in the case of OSiVC. This distinction results in clearly different momentum distributions of these two oxygen-related defects for different charge states. Overall, the PAS is demonstrated to be a powerful technique for distinguishing intrinsic vacancy-type defects and oxygen-doped composites in 3C-SiC. Combining the analysis of electron and positron density distributions, the electron localization and positron trapping behavior in defect systems with different charge states can be comprehensively understood. These first-principles results provide a solid theoretical foundation for identifying and characterizing the defects in oxygen-doped 3C-SiC by using positron annihilation spectroscopy.
-
Keywords:
- 3C-SiC /
- positron annihilation lifetime /
- Doppler broadening spectra /
- point defect
-
表 1 四种方案计算的正电子湮没寿命(单位: ps)
Table 1. Calculated positron annihilation lifetimes (ps) for the four schemes.
类型 BNLDA APGGA PHNCGGA QMCGGA 文献 bulk 150 150 147 153 145[56] ${\text{V}}_{\text{C}}^{0}$ 151 150 147 152 150[23] ${\text{V}}_{{\text{Si}}}^{0}$ 241 238 233 242 227[54] ${\text{V}}_{{\text{Si}}}^{1 - }$ 237 233 229 238 225[54] ${\text{V}}_{{\text{Si}}}^{2 - }$ 236 232 228 237 222[54] ${\text{V}}_{{\text{Si} + {\text{C}}}}^{0}$ 250 249 243 251 ${\text{V}}_{{\text{Si} + {\text{C}}}}^{1 - }$ 243 242 236 245 ${\text{V}}_{{\text{Si} + {\text{C}}}}^{2 - }$ 239 244 235 242 ${\text{O}}_{{\text{Si}}}^{0}$ 164 170 164 169 ${\text{O}}_{{\text{Si}}}^{1 - }$ 167 187 175 176 ${\text{O}}_{{\text{Si}}}^{2 - }$ 167 187 174 175 ${{\text{O}}_{\text{C}}}{\text{V}}_{{\text{Si}}}^{0}$ 239 242 234 242 ${{\text{O}}_{\text{C}}}{\text{V}}_{{\text{Si}}}^{1 - }$ 237 242 234 240 ${{\text{O}}_{\text{C}}}{\text{V}}_{{\text{Si}}}^{2 - }$ 234 240 231 238 ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{0}$ 181 186 180 186 ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{1 - }$ 183 202 190 192 ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{2 - }$ 183 202 190 191 表 2 3C-SiC中缺陷态与无缺陷态的相对Srel和Wrel参数
Table 2. Relative Srel and Wrel parameters of intrinsic defects and oxygen-doped defects in 3C-SiC.
Defect type Srel Wrel VC 1.020 0.948 VSi 1.063 0.872 VSi+C 1.082 0.790 OC 1.000 0.999 OSi 0.997 1.009 OCVSi 1.025 1.002 OSiVC 0.988 1.228 表 3 针对OSi和OSiVC的各种电荷态与无缺陷态的相对Srel和Wrel参数
Table 3. Relative Srel and Wrel parameters calculated for various charge states of OSi and OSiVC.
Defect type Srel Wrel ${\text{O}}_{{\text{Si}}}^{0}$ 0.997 1.009 ${\text{O}}_{{\text{Si}}}^{1 - }$ 0.984 1.087 ${\text{O}}_{{\text{Si}}}^{2 - }$ 0.983 1.092 ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{0}$ 0.988 1.228 ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{1 - }$ 0.990 1.210 ${{\text{O}}_{{\text{Si}}}}{\text{V}}_{\text{C}}^{2 - }$ 0.990 1.209 -
[1] Petti D A, Buongiorno J, Maki J T, Hobbins R R, Miller G K 2003 Nucl. Eng. Des. 222 281
Google Scholar
[2] Franceschini F, Ruddy F H 2011 Silicon Carbide Neutron Detectors (Rijeka: InTech) pp275-296
[3] Jiang W L, Jiao L, Wang H Y 2011 J. Am. Ceram. Soc. 94 4127
Google Scholar
[4] Fan X J, Ye R Q, Peng Z W, Wang J J, Fan A L, Guo X 2016 Nanotechnology 27 255604
Google Scholar
[5] 张雨萌, 朱丽慧, 班志刚, 刘一雄 2012 硬质合金 29 66
Google Scholar
Zhang Y M, Zhu L H, Ban Z G, Liu Y X 2012 Hard Alloy 29 66
Google Scholar
[6] 王堋人, 苟燕子, 王浩 2020 无机材料学报 35 525
Google Scholar
Wang P R, Gou Y Z, Wang H 2020 J. Inorg. Mater. 35 525
Google Scholar
[7] Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T 1998 Nature 391 773
Google Scholar
[8] Ishikawa T 2005 Polymeric and Inorganic Fibers (Berlin, Heidelberg: Springer,) (Vol. 178) p109
[9] Rosso E F, Baierle R J 2013 Chem. Phys. Lett. 568 140
[10] Gali A, Heringer D, Deák P, Hajnal Z, Frauenheim T, Devaty R P, Choyke W J 2002 Phys. Rev. B 66 125208
Google Scholar
[11] West R N 1973 Adv. Phys. 22 263
Google Scholar
[12] Puska M J, Nieminen R M 1994 Rev. Mod. Phys. 66 841
Google Scholar
[13] 张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角 2012 物理学报 61 237805
Zhang L J, Wang L H, Liu J D, Li Q, Cheng B, Zhang J, An R, Zhao M L, Ye B J 2012 Acta Phys. Sin. 61 237805
[14] 张宏俊, 王栋, 陈志权, 王少阶, 徐友明, 罗锡辉 2008 物理学报 57 7333
Zhang H J, Wang D, Chen Z Q, Wang S J, Xu Y M, Luo X H 2008 Acta Phys. Sin. 57 7333
[15] 张丽娟, 张传超, 廖威, 刘建党, 谷冰川, 袁晓东, 叶邦角 2015 物理学报 64 097802
Google Scholar
Zhang L J, Zhang C C, Liao W, Liu J D, Gu B C, Yuan X D, Ye B J 2015 Acta Phys. Sin. 64 097802
Google Scholar
[16] 郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角 2010 物理学报 59 2789
Google Scholar
Hao Y P, Chen X L, Cheng B, Kong W, Xu H X, Du H J, Ye B J 2010 Acta Phys. Sin. 59 2789
Google Scholar
[17] 黄世娟, 张文帅, 刘建党, 张杰, 李骏, 叶邦角 2014 物理学报 63 217804
Google Scholar
Huang S J, Zhang W S, Liu J D, Zhang J, Li J, Ye B J 2014 Acta Phys. Sin. 63 217804
Google Scholar
[18] 许红霞, 郝颖萍, 韩荣典, 翁惠民, 杜淮江, 叶邦角 2011 物理学报 60 067803
Google Scholar
Xu H X, Hao Y P, Han R D, Weng H M, Du H J, Ye B J 2011 Acta Phys. Sin. 60 067803
Google Scholar
[19] 刘建党 2010 博士学位论文(合肥: 中国科学技术大学)
Liu J D 2010 Ph. D. Dissertation ( Hefei: University of Science and Technology of China
[20] Lam C H, Lam T W, Ling C C, Fung S, Beling C D, Hang D S, Weng H M 2004 J. Phys. : Condens. Mat. 16 8409
Google Scholar
[21] Staab T E M, Puska M J, Nieminen R M, Torpo L M 2001 Materials Science Forum (Zurich: Trans Tech Publications Ltd) p533
[22] Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583
Google Scholar
[23] Brauer G, Anwand W, Coleman P G, Knights A P, Plazaola F, Pacaud Y, Skorupa W, Störmer J, Willutzki P 1996 Phys. Rev. B 54 3084
Google Scholar
[24] Brauer G, Anwand W, Nicht E-M, Kuriplach J, Šob M, Wagner N, Coleman P G, Puska M J, Korhonen T 1996 Phys. Rev. B 54 2512
Google Scholar
[25] Kawasuso A, Yoshikawa M, Itoh H, Krause-Rehberg R, Redmann F, Higuchi T, Betsuyaku K 2006 Physica B 376 350
[26] Hu X, Koyanagi T, Katoh Y, Wirth B D 2017 Phys. Rev. B 95 104103
Google Scholar
[27] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
Google Scholar
[28] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
Google Scholar
[29] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
Google Scholar
[30] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
Google Scholar
[31] Perdew J P, Kurth S, Zupan A, Blaha P 1999 Phys. Rev. Lett. 82 2544
Google Scholar
[32] Verma P, Truhlar D G 2017 J. Phys. Chem. C 121 7144
Google Scholar
[33] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
Google Scholar
[34] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
Google Scholar
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
Google Scholar
[36] Rauch T, Munoz F, Marques M A L, Botti S 2021 Phys. Rev. B 104 064105
[37] Zhang H T, Yan L, Tang X, Cheng G D 2024 Phys. Lett. A 525 129888
Google Scholar
[38] Levinshtein M E, Rumyantsev S L, Shur M S 2001 Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Hoboken: John Wiley & Sons) pp96-104
[39] Nieminen R M, Boronski E, Lantto L J 1985 Phys. Rev. B 32 1377
Google Scholar
[40] Boroński E, Nieminen R M 1986 Phys. Rev. B 34 3820
Google Scholar
[41] Arponen J, Pajanne E 1979 Ann. Phys. 121 343
Google Scholar
[42] Barbiellini B, Puska M J, Torsti T, Nieminen R M 1995 Phys. Rev. B 51 7341
Google Scholar
[43] Kuriplach J, Barbiellini B 2014 13th International Workshop on Slow Positron Beam Techniques and Applications. Journal of Physics: Conference Series Munich, Germany, September 15-20, 2013 p180
[44] Boroński E 2010 Nukleonika 55 9
[45] Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996 Phys. Rev. Lett. 77 2097
Google Scholar
[46] Alatalo M, Asoka-Kumar P, Ghosh V J, Nielsen B, Lynn K G, Kruseman A C, Van Veen A, Korhonen T, Puska M J 1998 J. Phys. Chem. Solids 59 55
Google Scholar
[47] Szpala S, Asoka-Kumar P, Nielsen B, Peng J P, Hayakawa S, Lynn K G, Gossmann H J 1996 Phys. Rev. B 54 4722
[48] Kawasuso A, Maekawa M, Betsuyaku K 2010 J. Phys. Conf. Ser. 225 012027
Google Scholar
[49] 孔伟, 郗传英, 叶邦角, 翁惠民, 周先意, 韩荣典 2004 高能物理与核物理 28 1234
Kong W, Xi C Y, Ye B J, Weng H M, Zhou X Y, Han R D 2004 High Energy Phys. Nucl. 28 1234
[50] 刘雄国, 邓力, 胡泽华, 李瑞, 付元光, 李刚, 王佳 2016 物理学报 65 092501
Google Scholar
Liu X G, Deng L, Hu Z H, Li R, Fu Y G, Li G, Wang J 2016 Acta Phys. Sin. 65 092501
Google Scholar
[51] Alatalo M, Barbiellini B, Hakala M, Kauppinen H, Korhonen T, Puska M J, Saarinen K, Hautojärvi P, Nieminen R M 1996 Phys. Rev. B 54 2397
[52] Makkonen I, Hakala M, Puska M J 2006 Phys. Rev. B 73 035103
[53] Tang Z, Toyama T, Nagai Y, Inoue K, Zhu Z Q, Hasegawa M 2008 J. Phys. : Condens. Matter 20 445203
Google Scholar
[54] Wiktor J, Jomard G, Torrent M, Bertolus M 2013 Phys. Rev. B 87 235207
Google Scholar
[55] Kawasuso A, Itoh H, Morishita N, Yoshikawa M, Ohshima T, Nashiyama I, Okada S, Okumura H, Yoshida S 1998 Appl. Phys. A 67 209
Google Scholar
[56] Panda B K, Brauer G, Skorupa W, Kuriplach J 2000 Phys. Rev. B 61 15848
Google Scholar
[57] Kawasuso A, Maekawa M, Fukaya Y, Yabuuchi A, Mochizuki I 2011 Phys. Rev. B 83 100406
Google Scholar
计量
- 文章访问数: 434
- PDF下载量: 4
- 被引次数: 0