-
ZIFs晶体由咪唑基桥接单金属离子构成, 可通过咪唑酯连接物灵活选取合适的官能团对其结构进行调控, 因而被赋予更多新的性质和功能. ZIFs晶体中孔结构及其化学环境与其性能紧密相关. 本文采用静置法制备了ZIFs纳米晶体. X射线衍射结果证实制备的晶体为典型的ZIF-8晶体, 扫描电子显微镜图可观察到其规则的菱型结构. N2吸附-脱附测试表明ZIFs晶体具有较大的比表面积和孔容, 分别为2966.26 m2/g和3.01 cm3/g. 随着Co摩尔含量的增大, ZIFs晶体比表面积和孔体积逐渐减小, 但是其孔径大小几乎稳定保持在12 Å左右. 而N2吸附-脱附等温线计算得到的孔径分布未显示咪唑配体组成的六元环的超微孔信息(3.4 Å). 此外, 利用正电子湮没寿命和多普勒展宽对晶体的微观结构和表面性能进行了研究. 正电子的寿命谱有4个分量. 较长寿命
$ {\tau }_{3} $ ,$ {\tau }_{4} $ 分别是o-Ps在其微孔区域和晶体规则棱角间隙处的湮没寿命. 随Co摩尔含量增大, 其寿命$ {\tau }_{3} $ 几乎没有变化, 而较长寿命$ {\tau }_{4} $ 从30.89 ns降至12.57 ns, 其对应强度$ {I}_{3} $ ,$ {I}_{4} $ 也分别从12.93%和8.15%急剧下降至3.68%和0.54%. 随Co摩尔含量的增大, 多普勒展宽得到的S参数呈连续上升趋势, 进一步多高斯拟合表明p-Ps强度也逐渐增大, 这主要是由于电子偶素发生了自旋转换效应. 因此, ZIFs纳米晶体中$ {\tau }_{4} $ 下降很可能是由于正电子偶素与晶体表面Co离子发生了自旋转换效应.ZIFs crystal is composed of imidazolidyl bridging single metal ions, and its structure can be adjusted by flexibly selecting functional groups of imidazolidyl ligands, thereby possessing more new properties and functions. While, the pore structure and chemical environment of ZIFs crystals are closely related to their properties. In this work, ZIF nanocrystals are prepared by static reaction. The X-ray diffraction results confirm that the prepared crystals are typical of ZIF-8 crystals, and the regular rhomboidal structure can be observed by scanning electron microscopy. The N2 adsorption-desorption test indicates that the ZIF crystal exhibits the larger specific surface area (2966.26 m2/g) and pore volume (3.01 cm3/g) . With the increase of Co content, specific surface area and pore volume of ZIFs crystal decrease, while the pore size remains nearly unchanged (around 12 Å). However, the pore size distribution calculated by N2 adsorption/desorption isothermal curve does not show the ultra-micropore information of the six-membered ring composed of imidazole ligands (3.4 Å). The microstructure and surface properties of the crystal are investigated by positron annihilation lifetime and Doppler broadening. The positron lifetime spectrum has four components. The longer lifetimes$ {\tau }_{3} $ and$ {\tau }_{4} $ are the annihilation lifetimes of o-Ps in the microporous region and the regular angular gap of the crystal, respectively. With the increase of Co content, the lifetime$ {\tau }_{3} $ hardly changes, while the longer lifetime$ {\tau }_{4} $ decreases from 30.89 ns to 12.57 ns, and the corresponding intensities$ {I}_{3} $ and$ {I}_{4} $ decrease sharply from 12.93% and 8.15% to 3.68% and 0.54%, respectively. With the increase of Co content, the S parameter obtained by doppler broadening shows a continuous upward trend, and the p-Ps intensity also increases gradually, which is mainly due to the self-rotation effect of the electron element. Therefore, the decrease of$ {\tau }_{4} $ in ZIFs nanocrystal is probably due to the self-rotation effect of positronium and Co ion on the crystal surface.-
Keywords:
- positron annihilation lifetime /
- positronium /
- Doppler broadening /
- self-rotation
[1] 彭雨, 吴依, 杨紫微, 李琳钰, 蒋华麟, 陈萍华 2020 广州化工 48 4Google Scholar
Peng Y, Wu Y, Yang Z W, Li L Y, Jiang H L, Chen P H 2020 Guangzhou Chem. Indus. 48 4Google Scholar
[2] 韩臻, 陈元涛, 张炜, 许成, 胡广壮, 刘蓉 2021 应用化工 50 638Google Scholar
Han Z, Chen Y T, Zhang W, Xu C, Hu G Z, Liu R 2021 Appl. Chem. Indus. 50 638Google Scholar
[3] 田龙, 豆维新, 杨玮婷, 王成 2021 应用化学 38 84Google Scholar
Tian L, Dou W X, Yang W T Wang C 2021 Chin. J. Appl. Chem. 38 84Google Scholar
[4] Sharma S K, Sudarshan K, Yadav A K, Jha S N, Bhattacharyya D, Pujari P K 2019 J. Phys. Chem. C 123 22273Google Scholar
[5] He X, Chen D R, Wang W N 2020 Chem. Eng. J. 382 122825Google Scholar
[6] Chu Q, Zhang S, Li X, Guo P, Fu A, Liu B, Wang Y Y 2021 Chem-Asian J. 16 1233Google Scholar
[7] Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G 2020 Sep. Purif. Technol. 236 116209Google Scholar
[8] Kumar S, Srivastava R, Koh J 2020 J. CO2 Util. 41 101251Google Scholar
[9] Ralph F S C, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wçll C, Zaremba O, Andreo J, Wuttke S, Diercks C S 2021 Angew. Chem. Int. Edit. 60 23946Google Scholar
[10] Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649Google Scholar
[11] 马生花, 马芙莲, 解玉龙 2020 硅酸盐通报 39 2993Google Scholar
Ma S H, Ma F L, Xie Y L 2020 Bull. Chin. Ceramic Soc. 39 2993Google Scholar
[12] Jin C X, Shang H B 2021 J. Solid State Chem. 297 122040Google Scholar
[13] Nagarjun N, Arthy K, Dhakshinamoorthy A 2021 Eur. J. Inorg. Chem. 2021 2108Google Scholar
[14] 邹伦妃, 马振超, 王苏龙, 白宇森, 王亚珍 2021 电源技术 45 512Google Scholar
Zou L F, Ma Z C, Wang S L, Bai Y S, Wang Y Z 2021 Power Technology 45 512Google Scholar
[15] Yao B, Lua S K, Lim H S, Zhang Q, Cui X, White T J, Ting V P, Dong Z 2021 Micropor. Mesopor. Mat. 314 110777Google Scholar
[16] Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar
[17] Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar
[18] Jean Y C 2003 Principles and Applications of Positron & Positronium Chemistry (World Scientific Pub Co Inc. (March 31)) p267
[19] Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar
[20] Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar
[21] Goworek T, Ciesielski K, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar
[22] Dull T L, Frieze W E, Gidley D W 2001 J. Phys. Chem. B 105 4657Google Scholar
[23] Li C Y, Qi N, Liu Z W, Zhou B, Chen Z Q, Wang Z 2016 Appl. Surf. Sci. 363 445Google Scholar
[24] 王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北: 湖北科学技术出版社) 第198页
Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Hubei: Hubei Science and Technology Press) p198 (in Chinese)
[25] Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H, Chu C W 1992 Phys. Rev. B 45 12126Google Scholar
[26] Matthias T, Katsumi K, Alexander V N, James P O, Francisco R R, Jean R, Kenneth S W S 2015 Pure Appl. Chem. 87 1051Google Scholar
[27] Davis M E 2002 Nature 417 813Google Scholar
[28] Paulin R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar
[29] Lahtinen J, Hautojärvi P 1997 J. Phys. Chem. B 101 1609Google Scholar
[30] Eldrup M, Vehanen A, Schultz P J, Lynn K G 1984 Phys. Rev. Lett. 53 954Google Scholar
[31] Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar
[32] Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar
[33] Zhang H J, Liu Z W, Chen Z Q, Wang S J 2011 Chin. Phys. Lett. 28 017802Google Scholar
[34] Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 Phys. Rev. B 71 115213Google Scholar
[35] Lazzarini A L F, Lazzarini E, Mariani M 1993 J. Chem. Soc. Faraday Trans. 89 3737Google Scholar
[36] Lazzarini A L F, Lazzarini E, Mariani M 1994 J. Chem. Soc. Faraday Trans. 90 423Google Scholar
-
表 1 ZIF-Co-Zn纳米晶体中孔结构信息
Table 1. Pore structure parameters of ZIF-Co-Zn crystals
Sample $ {S}_{\mathrm{B}\mathrm{E}\mathrm{T}}/ $ $({\mathrm{m} }^{2}{\cdot}{\mathrm{g} }^{-1})$ $ {S}_{\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{r}\mathrm{o}}/ $ $({\mathrm{m} }^{2}{\cdot}{\mathrm{g} }^{-1})$ $ {V}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $/ $\left({\mathrm{c}\mathrm{m} }^{3}{\cdot\mathrm{g} }^{-1}\right)$ B1 2966.26 2523.56 3.01 B2 2644.63 2330.56 2.39 B3 3110.94 2734.41 2.96 B4 3101.99 2684.39 2.99 B5 3149.70 2798.98 2.71 B6 3019.41 2753.46 1.70 B7 2250.85 2139.03 1.00 注: B1—B7依次代表制备的ZIF-Zn, ZIF-Co0.025-Zn0.975, ZIF-Co0.5-Zn0.95, ZIF-Co0.15-Zn0.85, ZIF-Co0.3-Zn0.7, ZIF-Co0.7-Zn0.3及ZIF-Co. -
[1] 彭雨, 吴依, 杨紫微, 李琳钰, 蒋华麟, 陈萍华 2020 广州化工 48 4Google Scholar
Peng Y, Wu Y, Yang Z W, Li L Y, Jiang H L, Chen P H 2020 Guangzhou Chem. Indus. 48 4Google Scholar
[2] 韩臻, 陈元涛, 张炜, 许成, 胡广壮, 刘蓉 2021 应用化工 50 638Google Scholar
Han Z, Chen Y T, Zhang W, Xu C, Hu G Z, Liu R 2021 Appl. Chem. Indus. 50 638Google Scholar
[3] 田龙, 豆维新, 杨玮婷, 王成 2021 应用化学 38 84Google Scholar
Tian L, Dou W X, Yang W T Wang C 2021 Chin. J. Appl. Chem. 38 84Google Scholar
[4] Sharma S K, Sudarshan K, Yadav A K, Jha S N, Bhattacharyya D, Pujari P K 2019 J. Phys. Chem. C 123 22273Google Scholar
[5] He X, Chen D R, Wang W N 2020 Chem. Eng. J. 382 122825Google Scholar
[6] Chu Q, Zhang S, Li X, Guo P, Fu A, Liu B, Wang Y Y 2021 Chem-Asian J. 16 1233Google Scholar
[7] Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G 2020 Sep. Purif. Technol. 236 116209Google Scholar
[8] Kumar S, Srivastava R, Koh J 2020 J. CO2 Util. 41 101251Google Scholar
[9] Ralph F S C, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wçll C, Zaremba O, Andreo J, Wuttke S, Diercks C S 2021 Angew. Chem. Int. Edit. 60 23946Google Scholar
[10] Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649Google Scholar
[11] 马生花, 马芙莲, 解玉龙 2020 硅酸盐通报 39 2993Google Scholar
Ma S H, Ma F L, Xie Y L 2020 Bull. Chin. Ceramic Soc. 39 2993Google Scholar
[12] Jin C X, Shang H B 2021 J. Solid State Chem. 297 122040Google Scholar
[13] Nagarjun N, Arthy K, Dhakshinamoorthy A 2021 Eur. J. Inorg. Chem. 2021 2108Google Scholar
[14] 邹伦妃, 马振超, 王苏龙, 白宇森, 王亚珍 2021 电源技术 45 512Google Scholar
Zou L F, Ma Z C, Wang S L, Bai Y S, Wang Y Z 2021 Power Technology 45 512Google Scholar
[15] Yao B, Lua S K, Lim H S, Zhang Q, Cui X, White T J, Ting V P, Dong Z 2021 Micropor. Mesopor. Mat. 314 110777Google Scholar
[16] Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar
[17] Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar
[18] Jean Y C 2003 Principles and Applications of Positron & Positronium Chemistry (World Scientific Pub Co Inc. (March 31)) p267
[19] Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar
[20] Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar
[21] Goworek T, Ciesielski K, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar
[22] Dull T L, Frieze W E, Gidley D W 2001 J. Phys. Chem. B 105 4657Google Scholar
[23] Li C Y, Qi N, Liu Z W, Zhou B, Chen Z Q, Wang Z 2016 Appl. Surf. Sci. 363 445Google Scholar
[24] 王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北: 湖北科学技术出版社) 第198页
Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Hubei: Hubei Science and Technology Press) p198 (in Chinese)
[25] Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H, Chu C W 1992 Phys. Rev. B 45 12126Google Scholar
[26] Matthias T, Katsumi K, Alexander V N, James P O, Francisco R R, Jean R, Kenneth S W S 2015 Pure Appl. Chem. 87 1051Google Scholar
[27] Davis M E 2002 Nature 417 813Google Scholar
[28] Paulin R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar
[29] Lahtinen J, Hautojärvi P 1997 J. Phys. Chem. B 101 1609Google Scholar
[30] Eldrup M, Vehanen A, Schultz P J, Lynn K G 1984 Phys. Rev. Lett. 53 954Google Scholar
[31] Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar
[32] Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar
[33] Zhang H J, Liu Z W, Chen Z Q, Wang S J 2011 Chin. Phys. Lett. 28 017802Google Scholar
[34] Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 Phys. Rev. B 71 115213Google Scholar
[35] Lazzarini A L F, Lazzarini E, Mariani M 1993 J. Chem. Soc. Faraday Trans. 89 3737Google Scholar
[36] Lazzarini A L F, Lazzarini E, Mariani M 1994 J. Chem. Soc. Faraday Trans. 90 423Google Scholar
计量
- 文章访问数: 4433
- PDF下载量: 79
- 被引次数: 0