搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性

邓文娟 朱斌 王壮飞 彭新村 邹继军

引用本文:
Citation:

变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性

邓文娟, 朱斌, 王壮飞, 彭新村, 邹继军

Resolution characteristics of varying doping and varying composition AlxGa1–xAs/GaAs reflective photocathodes

Deng Wen-Juan, Zhu Bin, Wang Zhuang-Fei, Peng Xin-Cun, Zou Ji-Jun
PDF
HTML
导出引用
  • 根据建立的变掺杂变组分反射式AlxGa1–xAs/GaAs光电阴极的分辨力模型以及调制传递函数(MTF)理论模型, 仿真了材料中掺杂浓度线性变化、Al组分线性变化, 掺杂浓度均匀不变、Al组分线性变化, 掺杂浓度线性变化、Al组分均匀不变, 掺杂浓度均匀不变、Al组分均匀不变这4种不同结构反射式光电阴极的分辨力特性. 分析了Al组分、掺杂浓度、AlxGa1–xAs层厚度、GaAs层厚度和入射光波长对阴极分辨力的影响. 仿真结果表明, 阴极材料中掺杂浓度梯度变化以及Al组分梯度变化都可以提高反射式AlxGa1–xAs/GaAs光电阴极的分辨力, 其中掺杂浓度线性变化的同时, Al组分线性变化对AlxGa1–xAs/GaAs光电阴极分辨力的影响最为明显. 仿真结果还表明: Al组分从0.45线性变化至0时, 阴极分辨力最好; 掺杂浓度从1019—1018 cm–3线性变化比保持1019 cm–3不变, 阴极分辨力更好; 而阴极中AlxGa1–xAs、GaAs层厚度以及入射光波长对4种阴极分辨力的影响则有着不同的变化规律.
    According to the established resolution model and modulation transfer function (MTF) of varying doping and varing composition reflection-mode (r-mode) AlxGa1–xAs/GaAs photocathode, the resolutions of four types of r-mode photocathodes, i.e. linearly varying doping and linearly varying Al composition, uniform doping and linearly varying Al composition, linearly varying doping and uniform Al composition, uniform doping and uniform Al composition structures, are simulated, and the effects of Al composition, the types of doping, AlxGa1–xAs layer thickness, GaAs layer thickness, and incident light wavelength on the resolution of cathodes are analyzed. The simulation results indicate that the varying doping and varying band-gap structures can also upgrade the resolution for r-mode AlxGa1–xAs/GaAs photocathodes, and the effect of linearly varying doping and linearly varying composition structure are more pronounced. The simulation results also show that the MTFs of the cathodes with the Al composition varying from 0.45 to 0 linearly declining are highest. The MTFs of the cathodes with the linearly varying doping from 1019−1018 cm–3 are higher than that with uniform 1019 cm–3 doping. With the increase of AlxGa1–xAs thickness, GaAs thickness and incident light wavelength, the MTFs of four types photocathode have different regularities.
      通信作者: 邹继军, jjzou@ecut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61961001, 11875012, 62061001, 61771245)、江西省自然科学基金(批准号: 20181BAB202026, 20192ACBL20003, 20202BAB202013, 20203BBE53030)和江西省“双千计划”(批准号: jxsq2019201053)资助的课题.
      Corresponding author: Zou Ji-Jun, jjzou@ecut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61961001, 11875012, 62061001, 61771245), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20181BAB202026, 20192ACBL20003, 20202BAB202013, 20203BBE53030), and the Jiangxi “Double Thousand Plan”, China (Grant No. jxsq2019201053)
    [1]

    Chanlek N, Herbert J D, Jones R M, Jones L B, Middleman K J 2015 J. Phys. D: Appl. Phys. 48 375102Google Scholar

    [2]

    Kim J, Kim J, Oh H, Meyyappan M, Han J W, Lee J S 2016 J. Vac. Sci. Technol. B 34 042201Google Scholar

    [3]

    Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92 3042Google Scholar

    [4]

    Zou J J, Chang B K, Yang Z, Qian J L, Zeng Y P 2008 Appl. Phys. Lett. 92 1721021Google Scholar

    [5]

    Karkare S, Dimitrov D, Schaff W, Cultrera L, Bartnik A 2013 J. Appl. Phys. 113 104904Google Scholar

    [6]

    Orlov D A, Krantz C, Wolf A, Jaroshevich A S, Kosolobov S N, Scheibler H E, Terekhov A S 2009 J. Appl. Phys. 106 054907Google Scholar

    [7]

    Yang Y, Yang W Z, Sun C D 2015 Sol. Energ. Mat. Sol. C. 132 410Google Scholar

    [8]

    郝光辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟 2020 物理学报 69 108501Google Scholar

    Hao G H, Han P Y, Li X H, Li Z P, Gao Y J 2020 Acta Phys. Sin. 69 108501Google Scholar

    [9]

    Wang H G, Qian Y S, Du Y J, Xu Y, Lu L B, Chang B K 2014 Appl. Opt. 53 335Google Scholar

    [10]

    Zou J J, Zhang Y J, Peng X C, Deng W J, Feng L, Chang B K 2012 Appl. Opt. 51 7662Google Scholar

    [11]

    Zhang Y J, Chang B K, Niu J, Zhao J, Zou J J, Shi F, Cheng H C 2011 Appl. Phys. Lett. 99 101104Google Scholar

    [12]

    Wang H G, Fu X Q, Ji X H, Du Y J, Liu J, Qian Y S, Chang B K 2014 Appl. Opt. 53 6230Google Scholar

    [13]

    邹继军, 常本康, 杨智 2007 物理学报 56 2992Google Scholar

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992Google Scholar

    [14]

    Zou J J, Zhang Y J, Deng W J, Peng X C, Jiang S T Chang B K 2015 Appl. Opt. 54 8521Google Scholar

    [15]

    牛军, 杨智, 常本康, 乔建良, 张益军 2009 物理学报 58 5002Google Scholar

    Niu J, Yang Z, Chang B K, Qiao J L, Zhang Y J 2009 Acta Phys. Sin. 58 5002Google Scholar

    [16]

    Deng W J, Zou J J, Peng X C, Feng L, Zhu Z F, Wang W L, Zhang Y J, Chang B K 2015 Appl. Opt. 54 1414Google Scholar

    [17]

    Deng W J, Zhang D L, Zou J J, Peng X C, Wang W L, Zhang Y J, Chang B K 2015 Proceddings of the 2th Photoelectronic Technology Committee Conferences Changchun, China, July 22–24, 2015 p97951X

    [18]

    Goldberg Y A 1999 Handbook Series on Semiconductor Parameters (Vol. 2) (London: World Scientific) pp1–36

    [19]

    Zarem H A, Lebens J A, Nordstrom K B, Sercel P C, Sanders S, Eng L E, Yariv A, Vahala K J 1989 Appl. Phys. Lett. 55 2622Google Scholar

    [20]

    Timmons M L, Colpitts T S, Venkatasubramanian, Keyes B M, Dunlavy D J, Ahrenkiel R K 1990 Appl. Phys. Lett. 56 1850Google Scholar

    [21]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754Google Scholar

  • 图 1  变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极结构示意图 (a) 结构及电场影响图; (b) 能带图(Ec为导带底, Ev为价带顶, Evac为真空能级, EF为费米能级, Te为激活层厚度)

    Fig. 1.  Structure diagram of varying doping and varying composition reflection-mode AlxGa1–xAs/GaAs photocathodes: (a) Structure and electric field effect diagram; (b) band structure (Ec is the conduction band minimum, Ev is the valence band peak level, Evac is the vacumm level, EF is the Fermi level, Te is the thickness of active layer).

    图 2  (a)变组分及(b)变掺杂反射式AlxGa1–xAs/GaAs光电阴极的MTF值 (a) 均匀掺杂(掺杂浓度1019 cm–3), 不同Al组分变化; (b) 变掺杂, 组分从0.45—0线性变化(结构中AlxGa1–xAs厚度为1 μm, GaAs厚度为10 nm, 入射光波长λ为600 nm)

    Fig. 2.  MTFs of (a) varying composition and (b) varying doping reflection-mode AlxGa1–xAs/GaAs photocathodes: (a) Uniform doping (doping concentration of 1019 cm–3), varying Al composition; (b) different doping styles, Al linearly changed from 0.45 to 0 (The thickness of AlxGa1–xAs is 1 μm, the thickness of GaAs is 10 nm, and the incident light wavelength λ is 600 nm).

    图 3  四种不同结构反射式AlxGa1–xAs/GaAs光电阴极 (a) 光子产生 (f = 400 lp/mm); (b) 不同空间频率下的MTF值(结构中AlxGa1–xAs厚度为1 μm, GaAs厚度为10 nm, λ = 600 nm)

    Fig. 3.  Four types reflection-mode AlxGa1–xAs/GaAs photocathodes: (a) Photons generation (f = 400 lp/mm); (b) MTFs with the different special frequency (The thickness of AlxGa1–xAs is 1 μm, the thickness of GaAs is 10 nm, and λ = 600 nm).

    图 4  变掺杂变组分反射式AlxGa1–xAs/GaAs光电阴极的MTF值 (a) 将GaAs层厚度固定为10 nm, 改变AlxGa1–xAs厚度; (b) 将AlxGa1–xAs厚度固定为1 μm, 改变GaAs层厚度 (λ = 600 nm, f = 800 lp/mm)

    Fig. 4.  MTFs of varying doping and varying composition reflection-mode AlxGa1–xAs/GaAs photocathodes: (a) GaAs layer thickness is fixed at 10 nm, changing AlxGa1–xAs thickness; (b) AlxGa1–xAs layer thickness is fixed at 1 µm, changing GaAs thickness (λ = 600 nm, f = 800 lp/mm).

    图 5  不同波长入射时, 变掺杂变组分反射式AlxGa1–xAs/GaAs光电阴极MTF值 (AlxGa1–xAs层厚度为1 μm, GaAs层厚度为10 nm, f = 800 lp/mm)

    Fig. 5.  MTFs of varying doping and varying composition reflection-mode AlxGa1–xAs/GaAs photocathodes with different incident light wavelength (The thickness of AlxGa1–xAs is 1 μm, the thickness of GaAs is 10 nm, f = 800 lp/mm).

    表 1  四种不同结构反射式AlxGa1–xAs/GaAs光电阴极参数

    Table 1.  Parameters of four different reflection-mode AlxGa1–xAs/GaAs photocathodes.

    阴极结构Al组分掺杂浓度/cm–3
    均匀掺杂均匀组分0保持1019 不变
    均匀掺杂线性组分从0.45—0线性变化保持1019 不变
    线性掺杂均匀组分0从1019—1018 线性变化
    线性掺杂线性组分从0.45—0线性变化从1019—1018 线性变化
    下载: 导出CSV

    表 2  四种不同结构反射式AlxGa1–xAs/GaAs光电阴极内建电场

    Table 2.  Built-in field of four types reflection-mode AlxGa1–xAs/GaAs photocathodes.

    阴极结构类型E/(V·cm–1)
    均匀掺杂均匀组分0
    均匀掺杂线性组分2099
    线性掺杂均匀组分600
    线性掺杂线性组分2106
    下载: 导出CSV
  • [1]

    Chanlek N, Herbert J D, Jones R M, Jones L B, Middleman K J 2015 J. Phys. D: Appl. Phys. 48 375102Google Scholar

    [2]

    Kim J, Kim J, Oh H, Meyyappan M, Han J W, Lee J S 2016 J. Vac. Sci. Technol. B 34 042201Google Scholar

    [3]

    Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92 3042Google Scholar

    [4]

    Zou J J, Chang B K, Yang Z, Qian J L, Zeng Y P 2008 Appl. Phys. Lett. 92 1721021Google Scholar

    [5]

    Karkare S, Dimitrov D, Schaff W, Cultrera L, Bartnik A 2013 J. Appl. Phys. 113 104904Google Scholar

    [6]

    Orlov D A, Krantz C, Wolf A, Jaroshevich A S, Kosolobov S N, Scheibler H E, Terekhov A S 2009 J. Appl. Phys. 106 054907Google Scholar

    [7]

    Yang Y, Yang W Z, Sun C D 2015 Sol. Energ. Mat. Sol. C. 132 410Google Scholar

    [8]

    郝光辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟 2020 物理学报 69 108501Google Scholar

    Hao G H, Han P Y, Li X H, Li Z P, Gao Y J 2020 Acta Phys. Sin. 69 108501Google Scholar

    [9]

    Wang H G, Qian Y S, Du Y J, Xu Y, Lu L B, Chang B K 2014 Appl. Opt. 53 335Google Scholar

    [10]

    Zou J J, Zhang Y J, Peng X C, Deng W J, Feng L, Chang B K 2012 Appl. Opt. 51 7662Google Scholar

    [11]

    Zhang Y J, Chang B K, Niu J, Zhao J, Zou J J, Shi F, Cheng H C 2011 Appl. Phys. Lett. 99 101104Google Scholar

    [12]

    Wang H G, Fu X Q, Ji X H, Du Y J, Liu J, Qian Y S, Chang B K 2014 Appl. Opt. 53 6230Google Scholar

    [13]

    邹继军, 常本康, 杨智 2007 物理学报 56 2992Google Scholar

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992Google Scholar

    [14]

    Zou J J, Zhang Y J, Deng W J, Peng X C, Jiang S T Chang B K 2015 Appl. Opt. 54 8521Google Scholar

    [15]

    牛军, 杨智, 常本康, 乔建良, 张益军 2009 物理学报 58 5002Google Scholar

    Niu J, Yang Z, Chang B K, Qiao J L, Zhang Y J 2009 Acta Phys. Sin. 58 5002Google Scholar

    [16]

    Deng W J, Zou J J, Peng X C, Feng L, Zhu Z F, Wang W L, Zhang Y J, Chang B K 2015 Appl. Opt. 54 1414Google Scholar

    [17]

    Deng W J, Zhang D L, Zou J J, Peng X C, Wang W L, Zhang Y J, Chang B K 2015 Proceddings of the 2th Photoelectronic Technology Committee Conferences Changchun, China, July 22–24, 2015 p97951X

    [18]

    Goldberg Y A 1999 Handbook Series on Semiconductor Parameters (Vol. 2) (London: World Scientific) pp1–36

    [19]

    Zarem H A, Lebens J A, Nordstrom K B, Sercel P C, Sanders S, Eng L E, Yariv A, Vahala K J 1989 Appl. Phys. Lett. 55 2622Google Scholar

    [20]

    Timmons M L, Colpitts T S, Venkatasubramanian, Keyes B M, Dunlavy D J, Ahrenkiel R K 1990 Appl. Phys. Lett. 56 1850Google Scholar

    [21]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754Google Scholar

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/${\boldsymbol{\beta }}$-Bi2O3界面电学性能. 物理学报, 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [3] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [4] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210635
    [5] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [6] 张美, 李奎念, 李阳, 盛亮, 张艳红. 一种新型的液闪阵列成像屏空间分辨特性. 物理学报, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [7] 段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民. Bayer滤波型彩色相机调制传递函数测量方法. 物理学报, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [8] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定. 物理学报, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [9] 李秀坤, 孟祥夏, 夏峙. 水下目标几何声散射回波在分数阶傅里叶变换域中的特性. 物理学报, 2015, 64(6): 064302. doi: 10.7498/aps.64.064302
    [10] 赵凤岐, 张敏, 李志强, 姬延明. 纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响. 物理学报, 2014, 63(17): 177101. doi: 10.7498/aps.63.177101
    [11] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析. 物理学报, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [12] 蔡志鹏, 杨文正, 唐伟东, 侯洵. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析. 物理学报, 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [13] 张荣福, 王涛, 潘超, 王亮亮, 庄松林. 波前编码系统景深延拓性能研究. 物理学报, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [14] 张益军, 牛军, 赵静, 邹继军, 常本康. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究. 物理学报, 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [15] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析. 物理学报, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [16] 戚巽骏, 林 斌, 曹向群, 陈钰清. 基于调制传递函数的光学低通滤波器评价模型与实验研究. 物理学报, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [17] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算. 物理学报, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [18] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [20] 邵嘉平, 胡 卉, 郭文平, 汪 莱, 罗 毅, 孙长征, 郝智彪. 高In组分InxGa1-xN/GaN多量子阱材料电致荧光谱的研究. 物理学报, 2005, 54(8): 3905-3909. doi: 10.7498/aps.54.3905
计量
  • 文章访问数:  4456
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-04-11
  • 上网日期:  2022-07-18
  • 刊出日期:  2022-08-05

/

返回文章
返回