搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光源光谱特性对空间相机调制传递函数检测的影响

刘尚阔 王涛 李坤 曹昆 张玺斌 周艳 赵建科 姚保利

引用本文:
Citation:

光源光谱特性对空间相机调制传递函数检测的影响

刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利

Influence of spectral characteristics of light sources on measuring space camera modulation transfer function

Liu Shang-Kuo, Wang Tao, Li Kun, Cao Kun, Zhang Xi-Bin, Zhou Yan, Zhao Jian-Ke, Yao Bao-Li
PDF
HTML
导出引用
  • 调制传递函数(modulation transfer function, MTF)检测是评价空间相机像质的重要手段. 空间相机光学系统透过率和色差、探测器量子效率均与波长相关, 采用不同光谱特征的光源所得到的MTF会出现偏差, 光源光谱特性的影响不可忽略. 针对这一问题, 提出了一种分析光源光谱特性对空间相机MTF检测结果影响的方法, 设计了空间相机光谱响应率和单色PSF标定装置及方法. 利用所提方法及标定结果, 计算了五种光源检测空间相机MTF时的理论值, 发现氙灯和其他四种光源的MTF值偏差较大. 对比卤钨灯和氙灯检测MTF时的理论值, 发现卤钨灯所得MTF在全频段内均大于氙灯所获取的MTF, 二者之间的偏差在中高频处最大, 最大偏差为0.075. 搭建了实验装置, 分别采用卤钨灯和氙灯作为光源, 利用倾斜刃边法检测MTF, 发现二者所得MTF在各个频率点处的分布特征及偏差与理论计算结果相同, 且最大偏差为0.057. 理论及实验结果表明, 本文方法能够准确评估光源光谱特性对空间相机MTF检测的影响.
    Modulation transfer function (MTF) measurement is a major means to evaluate the imaging quality of a space camera. The influence caused by the spectral characteristic of light source on the MTF results is not negligible, because the transmittance and color aberration of optical systems, and quantum efficiency of the space camera detectors are all spectrally related. Thus, MTF results tested by different light sources are different from each other. To address this problem, we propose a method to analyze the influence of spectral characteristics of light sources on measuring the MTF of space cameras. In addition, the devices and methods are designed to calibrate the spectral response and monochrome point spread function (PSF) of space camera. A Sigma lens (focal length: 1000mm, F number: 5.6) and a Cannon EOS 5DSR camera (pixel size: 4.14 μm) are combined into an experimental space camera, whose spectral response is calibrated with a monochromator (Omno30300, NBeT) and a spectral radiometer (FieldSpec, ASD). We calibrate the monochrome PSF of the Sigma lens with the same monochromator and a CCD (PIXIS 1024, Princeton Instruments, pixel size: 13 μm) micro-measuring system (20X objective). During the calibration of spectral response and monochrome PSF, the same collimator (focus: 5000 mm, F number: 10) is used. With using the proposed method and those calibrating data, we compute the theoretical values of the MTF of a space camera measured separately with five different light sources. The results indicate that MTF measured by a xenon lamp is greatly different from those MTFs measured by the other four light sources. Comparisons of those theoretically calculated MTFs, separately, show that the MTF measured by a tungsten halogen lamp is greater than the MTF measured by a xenon lamp at each spatial frequency. The deviation between those two lamps reaches a maximum value of 0.075 in the medium-high frequency zone. Furthermore, in order to verify those theoretical conclusions, a platform including a collimator and the previous space camera is constructed. The MTFs measured by a tungsten halogen lamp and a xenon lamp are computed with the slanted-edge method respectively. The results demonstrate that the distributions and deviations of the MTFs tested by those two lamps are identical to those theoretical results at each spatial frequency, with the maximum deviation being 0.057. The theoretical and experimental results demonstrate that the suggested method can accurately calculate the influence of spectral characteristics of light sources on measuring MTF of space cameras. The proposed method can also be adopted to investigate the influence of spectral characteristics of light sources on MTF of optical systems in the design or test stages.
      通信作者: 刘尚阔, liushangkuo@opt.ac.cn
      Corresponding author: Liu Shang-Kuo, liushangkuo@opt.ac.cn
    [1]

    吕乃光 2011 傅里叶光学(第2版)(北京: 机械工业出版社) 第50−52页

    Lü N G 2011 Fourier Optics (2nd Ed.) (Beijing: China Machine Press) pp50−52 (in Chinese)

    [2]

    Xie X F, Fan H D, Wang A D, Zou N Y, Zhang Y C 2018 Appl. Opt. 57 6552Google Scholar

    [3]

    Kenichiro M 2019 Opt. Express 27 1345Google Scholar

    [4]

    Jeffrey T O, Richard L E, Eddie L J 2007 Opt. Eng. 46 16403Google Scholar

    [5]

    Zhou Z X, Gao F, Zhao H J, Zhang L X, Ren L Q, Li Z, Muhammad U G, Liu H 2014 Opt. Express 22 2244Google Scholar

    [6]

    Fang Y C, Tsay H L, Huang G Y 2014 Appl. Opt. 53 195Google Scholar

    [7]

    ISO Standard 15529 2015 Optics and Photonics-Optical Transfer Function-Principles of Measurement of Modulation Transfer Function (MTF) of Sampled Imaging Systems

    [8]

    Glenn D B, Sidney Y 1995 Appl. Opt. 34 8050Google Scholar

    [9]

    David N S, James S G, Regina K F 1995 Appl. Opt. 34 746Google Scholar

    [10]

    吕恒毅, 薛旭成, 赵运隆, 韩诚山 2015 光学精密工程 23 1484Google Scholar

    Lü H Y, Xue X C, Zhao Y L, Han C S 2015 Opt. Prec. Eng. 23 1484Google Scholar

    [11]

    段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民 2017 物理学报 66 351Google Scholar

    Duan Y X, Liu S K, Chen Y Q, Xue X, Zhao J K, Gao L M 2017 Acta Phys. Sin. 66 351Google Scholar

    [12]

    Peter D B 2000 Proc. IS&T PICS Conf Portland, USA, January 1, 2000 p135

    [13]

    ISO Standard 12233 2017 Photography-Electronic Still Picture Imaging-Resolution and Spatial Frequency Responses

    [14]

    Don W, Peter D B 2014 IS&T/SPIE Electronic Imaging San Francisco, USA, February 3, 2014 p901605

    [15]

    周川杰, 吕政欣, 产晓冰, 李显斌 2011 航天返回与遥感 32 33Google Scholar

    Zhou C J, Lü Z X, Chan X B, Li X B 2011 Spacecraft Recov. Remot. Sens. 32 33Google Scholar

    [16]

    Alexis P T, Jonathan M M 1995 Opt. Eng. 34 1808Google Scholar

    [17]

    Li T C, Feng H J 2009 Sixth International Symposium on Multispectral Image Processing and Pattern Recognition Yichang, China, October 30, 2009 p74981

    [18]

    Li T C, Feng H J Xu Z H 2011 Chin. Opt. Lett. 9 031101Google Scholar

    [19]

    袁航飞, 郭永飞, 司国良, 李云飞, 曲立新 2015 光学学报 35 172Google Scholar

    Yuan H F, Guo Y F, Si G L, Li Y F, Qu L X 2015 Acta Opt. Sin. 35 172Google Scholar

    [20]

    Duan Y X, Xu S B, Yuan S C, Chen Y Q, Li H G, Da Z S, Gao L M 2018 Opt. Eng. 57 14103Google Scholar

    [21]

    Xie X F, Fan H D, Wang H Y, Wang Z B, Zou N Y 2018 Appl. Opt. 57 B83Google Scholar

    [22]

    Kenichiro M, Yamashita T, Nishida Y, Sugawara M 2014 Opt. Express 22 6040Google Scholar

    [23]

    GB/T 30697 2014 星载大视场多光谱相机性能测试方法

    GB/T 30697 2014 Test Methods of Characteristics for Spaceborne Multispectral Camera with Wide Field of View (in Chinese)

    [24]

    李坤, 陈永权, 赵建科, 段亚轩, 李巧玲, 潘亮, 龙江波, 张海洋 2015 光学精密工程 23 2482Google Scholar

    Li K, Chen Y Q, Zhao J K, Duan Y X, Li Q L, Pan L, Long J B, Zhang H Y 2015 Opt. Prec. Eng. 23 2482Google Scholar

    [25]

    Battula T, Georgiev T, Gille J, Sergio G 2018 J. Electron. Imaging 27 13015Google Scholar

  • 图 1  空间相机MTF检测系统组成

    Fig. 1.  Configuration of a space camera MTF measurement system.

    图 2  空间相机MTF检测系统光谱响应率标定原理图

    Fig. 2.  Schematic of calibrating the spectral response of the space camera MTF measurement system.

    图 3  空间相机光学系统单色PSF标定原理图

    Fig. 3.  Schematic of calibrating the monochrome PSF of the optical system of a space camera.

    图 4  空间相机MTF检测系统光谱响应标定结果

    Fig. 4.  Calibration results of the spectral response of the space camera MTF measurement system.

    图 5  常用光源光谱特性

    Fig. 5.  Spectral characteristics of typical light sources.

    图 6  空间相机光学系统多个波长处的单色PSF (a) 450 nm; (b) 500 nm; (c) 550 nm; (d) 600 nm; (e) 650 nm; (f) 700 nm

    Fig. 6.  Monochrome PSF of the optical system of a space camera at: (a) 450 nm; (b) 500 nm; (c) 550 nm; (d) 600 nm; (e) 650 nm; (f) 700 nm.

    图 7  单色光弥散斑直径随波长变化曲线图

    Fig. 7.  Diameter of monochrome spot diagrams verse wavelength.

    图 8  不同光源对应空间相机MTF理论值

    Fig. 8.  Theoretical values of the space camera MTF corresponding to different light sources.

    图 9  实验采集的刀口靶图像

    Fig. 9.  Knife-edge image captured in the experiment.

    图 10  卤钨灯和氙灯光源MTF检测结果

    Fig. 10.  MTF measurement results with a tungsten halogen lamp and a xenon lamp.

    表 1  卤钨灯和氙灯所得MTF理论值及其偏差

    Table 1.  Theoretical values and its deviation between the MTF measured with a tungsten halogen lamp and a xenon lamp.

    光源不同空间频率处的MTF
    ${f_c}/4$${f_c}/2$$3{f_c}/4$${f_c}$
    卤钨灯0.7840.3770.1530.124
    氙灯0.7500.3020.0910.089
    卤钨灯与氙灯
    间MTF偏差
    0.0330.0750.0620.036
    下载: 导出CSV

    表 2  卤钨灯和氙灯光源所得MTF检测结果及其偏差

    Table 2.  Test results and its deviation between the MTF measured with slanted-edge method by using a tungsten halogen lamp and a xenon lamp.

    光源不同空间频率处的MTF
    ${f_c}/4$${f_c}/2$$3{f_c}/4$${f_c}$
    卤钨灯0.4600.2480.0910.053
    氙灯0.4280.1910.0580.020
    卤钨灯与氙灯
    间MTF偏差
    0.0320.0570.0330.033
    下载: 导出CSV
  • [1]

    吕乃光 2011 傅里叶光学(第2版)(北京: 机械工业出版社) 第50−52页

    Lü N G 2011 Fourier Optics (2nd Ed.) (Beijing: China Machine Press) pp50−52 (in Chinese)

    [2]

    Xie X F, Fan H D, Wang A D, Zou N Y, Zhang Y C 2018 Appl. Opt. 57 6552Google Scholar

    [3]

    Kenichiro M 2019 Opt. Express 27 1345Google Scholar

    [4]

    Jeffrey T O, Richard L E, Eddie L J 2007 Opt. Eng. 46 16403Google Scholar

    [5]

    Zhou Z X, Gao F, Zhao H J, Zhang L X, Ren L Q, Li Z, Muhammad U G, Liu H 2014 Opt. Express 22 2244Google Scholar

    [6]

    Fang Y C, Tsay H L, Huang G Y 2014 Appl. Opt. 53 195Google Scholar

    [7]

    ISO Standard 15529 2015 Optics and Photonics-Optical Transfer Function-Principles of Measurement of Modulation Transfer Function (MTF) of Sampled Imaging Systems

    [8]

    Glenn D B, Sidney Y 1995 Appl. Opt. 34 8050Google Scholar

    [9]

    David N S, James S G, Regina K F 1995 Appl. Opt. 34 746Google Scholar

    [10]

    吕恒毅, 薛旭成, 赵运隆, 韩诚山 2015 光学精密工程 23 1484Google Scholar

    Lü H Y, Xue X C, Zhao Y L, Han C S 2015 Opt. Prec. Eng. 23 1484Google Scholar

    [11]

    段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民 2017 物理学报 66 351Google Scholar

    Duan Y X, Liu S K, Chen Y Q, Xue X, Zhao J K, Gao L M 2017 Acta Phys. Sin. 66 351Google Scholar

    [12]

    Peter D B 2000 Proc. IS&T PICS Conf Portland, USA, January 1, 2000 p135

    [13]

    ISO Standard 12233 2017 Photography-Electronic Still Picture Imaging-Resolution and Spatial Frequency Responses

    [14]

    Don W, Peter D B 2014 IS&T/SPIE Electronic Imaging San Francisco, USA, February 3, 2014 p901605

    [15]

    周川杰, 吕政欣, 产晓冰, 李显斌 2011 航天返回与遥感 32 33Google Scholar

    Zhou C J, Lü Z X, Chan X B, Li X B 2011 Spacecraft Recov. Remot. Sens. 32 33Google Scholar

    [16]

    Alexis P T, Jonathan M M 1995 Opt. Eng. 34 1808Google Scholar

    [17]

    Li T C, Feng H J 2009 Sixth International Symposium on Multispectral Image Processing and Pattern Recognition Yichang, China, October 30, 2009 p74981

    [18]

    Li T C, Feng H J Xu Z H 2011 Chin. Opt. Lett. 9 031101Google Scholar

    [19]

    袁航飞, 郭永飞, 司国良, 李云飞, 曲立新 2015 光学学报 35 172Google Scholar

    Yuan H F, Guo Y F, Si G L, Li Y F, Qu L X 2015 Acta Opt. Sin. 35 172Google Scholar

    [20]

    Duan Y X, Xu S B, Yuan S C, Chen Y Q, Li H G, Da Z S, Gao L M 2018 Opt. Eng. 57 14103Google Scholar

    [21]

    Xie X F, Fan H D, Wang H Y, Wang Z B, Zou N Y 2018 Appl. Opt. 57 B83Google Scholar

    [22]

    Kenichiro M, Yamashita T, Nishida Y, Sugawara M 2014 Opt. Express 22 6040Google Scholar

    [23]

    GB/T 30697 2014 星载大视场多光谱相机性能测试方法

    GB/T 30697 2014 Test Methods of Characteristics for Spaceborne Multispectral Camera with Wide Field of View (in Chinese)

    [24]

    李坤, 陈永权, 赵建科, 段亚轩, 李巧玲, 潘亮, 龙江波, 张海洋 2015 光学精密工程 23 2482Google Scholar

    Li K, Chen Y Q, Zhao J K, Duan Y X, Li Q L, Pan L, Long J B, Zhang H Y 2015 Opt. Prec. Eng. 23 2482Google Scholar

    [25]

    Battula T, Georgiev T, Gille J, Sergio G 2018 J. Electron. Imaging 27 13015Google Scholar

  • [1] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [2] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] 邓文娟, 朱斌, 王壮飞, 彭新村, 邹继军. 变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性. 物理学报, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [4] 张美, 李奎念, 李阳, 盛亮, 张艳红. 一种新型的液闪阵列成像屏空间分辨特性. 物理学报, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [5] 郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月. 分形结构稀疏孔径阵列的成像性能. 物理学报, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [6] 郑鑫, 武鹏飞, 饶瑞中. 天光背景下混浊大气中成像质量的分析方法. 物理学报, 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [7] 张敏睿, 贺正权, 汪韬, 田进寿. 偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析. 物理学报, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [8] 段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民. Bayer滤波型彩色相机调制传递函数测量方法. 物理学报, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [9] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定. 物理学报, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [10] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析. 物理学报, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [11] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [12] 袁永腾, 郝轶聃, 侯立飞, 涂绍勇, 邓博, 胡昕, 易荣清, 曹柱荣, 江少恩, 刘慎业, 丁永坤, 缪文勇. 流体力学不稳定性增长测量方法研究. 物理学报, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [13] 张荣福, 王涛, 潘超, 王亮亮, 庄松林. 波前编码系统景深延拓性能研究. 物理学报, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [14] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析. 物理学报, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [16] 戚巽骏, 林 斌, 曹向群, 陈钰清. 基于调制传递函数的光学低通滤波器评价模型与实验研究. 物理学报, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [17] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [18] 谢本超, 卢振武, 李凤有. 近柱面中频面形检测中曲面拟合法精度问题研究. 物理学报, 2005, 54(7): 3144-3148. doi: 10.7498/aps.54.3144
    [19] 黄 菁, 梁瑞生, 司徒达, 张坤明, 唐志列. 高斯光束共焦扫描激光显微镜的光学传递函数. 物理学报, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [20] 西门纪业, 晏继文, 黄旭. 存在球差和失焦下电子光学传递函数和脉冲响应函数. 物理学报, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
计量
  • 文章访问数:  3269
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2021-02-21
  • 上网日期:  2021-06-22
  • 刊出日期:  2021-07-05

/

返回文章
返回