搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单元辐射叠加法的结构声源声场重建方法

时胜国 高塬 张昊阳 杨博全

引用本文:
Citation:

基于单元辐射叠加法的结构声源声场重建方法

时胜国, 高塬, 张昊阳, 杨博全

Sound field reconstruction of structural source based on element radiation superposition method

Shi Sheng-Guo, Gao Yuan, Zhang Hao-Yang, Yang Bo-Quan
PDF
HTML
导出引用
  • 为了提高分布式结构声源的声场重建精度, 本文提出了基于单元辐射叠加法的结构声源声场重建方法. 该方法首先利用声场叠加原理和结构振声传递特性, 建立了结构声源表面振动与辐射声场之间的振声传递关系解析表达式, 得到便于快速计算的振声传递矩阵, 能够解决连续分布、相干结构噪声源的声传播模型精细化表征问题. 然后利用振声传递矩阵作为传递算子进行声场重建, 并与迭代加权算法相结合. 通过将基于单元辐射叠加法的声场预报结果与解析法预报结果进行比较, 验证了单元辐射叠加法具有较高的准确性. 并将基于单元辐射叠加法的声场重建方法与传统等效源法近场声全息和迭代加权等效源法相比较, 通过仿真分析与矩形板声场重建实验证明了基于单元辐射叠加法的声场重建方法能够改善结构声源的声场重建精度并增大近场声全息的有效测试距离范围.
    In order to improve the sound field reconstruction accuracy of distributed structural source, a new near-field acoustic holography is established based on the element radiation superposition method (ERSM). In the proposed method, the surface of structural source is divided into several regular pistons. The sound field of structural source is considered as the superposition of sound field of pistons. Firstly, we compare the sound field calculated by ERSM with that by Rayleigh's integral. It is proved that ERSM is quite accurate in sound field prediction. Based on ERSM, a vibration acoustic transfer (VAT) function is derived. The VAT function has computable analytical expression and embodies the transfer relationship between the structural source surface and the radiated sound field. The VAT function can precisely characterize the acoustic propagation of continuous distributed coherent sources. Subsequently, we employ the VAT function to replace the Green's function, and apply the VAT function to sound field reconstruction. Different with the equivalent source method (ESM) which is widely used in sound field reconstruction, ERSM directly divides the piston-sources on the surface of structural source rather than constructing the equivalent point-sources on a plane behind the structural source. Furthermore, we introduce a weight matrix into ERSM and iteratively calculate the vibration velocity for a more accurate result, and we call the proposed method as iterative weighted ERSM (IWERSM). In this paper, the simulations and experiment of sound field reconstruction of a rectangular plate are performed. In the proposed method, the rectangular plate is divided into several rectangular pistons. The reconstruction results of ERSM and IWERSM are compared with that of ESM and iterative weighted ESM (IWESM) respectively. The reconstruction accuracies at different distances between the plate and array (test distances) are analyzed. The simulation results show the accuracy of ERSM and IWERSM are better than that of ESM and IWESM respectively. With the increase of test distance, the phenomenon is more obvious, and IWERSM even shows a good reconstruction accuracy while the test distance is more than half a wavelength. The experiment results also validate that ERSM and IWERSM have better reconstruction accuracy than ESM and IWESM respectively at the same test distance. In a word, the simulations and experiments demonstrate that the proposed method can improve the sound field reconstruction accuracy of regular structural source and expand the valid test distance of near-field acoustic holography.
      通信作者: 张昊阳, zhanghaoyang@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61701133)资助的课题
      Corresponding author: Zhang Hao-Yang, zhanghaoyang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61701133)
    [1]

    聂永发, 朱海潮 2014 物理学报 63 104303Google Scholar

    Nie Y F, Zhu H C 2014 Acta Phys. Sin. 63 104303Google Scholar

    [2]

    Bi C X, Chen X Z, Chen J, Zhou R 2005 Sci. China Ser. E: Technol. Sci. 48 338Google Scholar

    [3]

    李卫兵, 陈剑, 毕传兴, 陈心昭 2006 物理学报 55 1264Google Scholar

    Li W B, Chen J, Bi C X, Chen X Z 2006 Acta Phys. Sin. 55 1264Google Scholar

    [4]

    张小正, 毕传兴, 徐亮, 陈心昭 2010 物理学报 59 5564Google Scholar

    Zhang X Z, Bi C X, Xu L, Chen X Z 2010 Acta Phys. Sin. 59 5564Google Scholar

    [5]

    Pinho M E V 2004 ABCM Symposium Series in Mechatronics (Vol. 1) Sao Paulo, Brazil, November 10−14, 2004 p590

    [6]

    Valdivia N P, Williams E G 2006 J. Acoust. Soc. Am. 120 3694Google Scholar

    [7]

    Zhang Y B 2009 J. Acoust. Soc. Am. 126 1257Google Scholar

    [8]

    Oudompheng B, Pereira A, Picard C, Leclere Q, Nicolas B 2014 5 th Berlin Beamforming Conference Berlin, Germany, February 19−20, 2014 p12

    [9]

    Xu L, Bi C X, Zhang X, Zheng C J 2014 INTERNOISE 2014-43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control Melbourne, Australia, November 16−19, 2014 p458

    [10]

    蔡鹏飞 2015 硕士学位论文 (重庆: 重庆大学)

    Cai P F 2015 M. S. Thesis (Chongqing: Chongqing University) (in Chinese)

    [11]

    Ping G L, Chu Z G, Xu Z M, Shen L B 2017 Sci. Rep. 7 43458Google Scholar

    [12]

    Fernandez-Grande E, Xenaki A 2015 Proceedings of Internoise 2015-44th International Congress and Exposition on Noise Control Engineering San Francisco, United States, August 9−12, 2015 p10

    [13]

    Bi C X, Liu Y, Xu L, Zhang Y B 2017 J. Acoust. Soc. Am. 141 73Google Scholar

    [14]

    Hald J 2020 J. Acoust. Soc. Am. 147 2211Google Scholar

    [15]

    李加庆, 陈进, 杨超, 贾文强 2008 物理学报 57 4258Google Scholar

    Li J Q, Chen J, Yang C, Jia W Q 2008 Acta Phys. Sin. 57 4258Google Scholar

    [16]

    商德江, 钱治文, 何元安, 肖妍 2018 物理学报 67 084301Google Scholar

    Shang D J, Qian Z W, He Y A, Xiao Y 2018 Acta Phys. Sin. 67 084301Google Scholar

    [17]

    朱拥勇, 刘宝 2016 噪声与振动控制 36 11

    Zhu Y Y, Liu B 2016 Noise Vibra. Contrl. 36 11

    [18]

    任惠娟, 姚展, 薛小庆, 刘婷, 雷烨 2016 陕西科技大学学报 34 183Google Scholar

    Ren H J, Yao Z, Xue X Q, Liu T, Lei Y 2016 J. Shanxi Univ. Sci. Technol. 34 183Google Scholar

    [19]

    钱治文, 商德江, 孙启航, 何元安, 翟京生 2019 物理学报 68 024301Google Scholar

    Qian Z W, Shang D J, Sun Q H, He Y A, Zhai J S 2019 Acta Phys. Sin. 68 024301Google Scholar

    [20]

    王斌, 汤渭霖, 范军 2008 声学学报 33 226Google Scholar

    Wang B, Tang W L, Fan J 2008 Acta Acust. 33 226Google Scholar

    [21]

    何祚镛, 赵玉芳 1981 声学理论基础 (北京: 国防工业出版社) 第237−241页

    He Z Y, Zhao Y F 1981 Theories of Acoustics (Beijing: National Defense Industry Press) pp237−241 (in Chinese)

    [22]

    Antoni J 2012 J. Acoust. Soc. Am. 131 2873Google Scholar

  • 图 1  平面障板及其表面活塞示意图

    Fig. 1.  Plane baffle and corresponding pistons

    图 2  不同距离处的声场预报结果(100 Hz) (a) 解析法; (b) 单元辐射叠加法

    Fig. 2.  Sound field prediction at 100 Hz: (a) Analytical value (theoretical); (b) ERSM

    图 3  不同距离处的声场预报结果(1000 Hz) (a) 解析法; (b) 单元辐射叠加法

    Fig. 3.  Sound field prediction at 1000 Hz: (a) Analytical value (theoretical); (b) ERSM

    图 4  100 Hz预报声压切线对比图 (a) 0.005λ; (b) 1.2λ

    Fig. 4.  Pressure profiles at 100 Hz: (a) 0.005λ; (b) 1.2λ

    图 5  1000 Hz预报声压切线对比图 (a) 0.005λ; (b) 1.2λ

    Fig. 5.  Pressure profiles at 1000 Hz: (a) 0.005λ; (b) 1.2λ

    图 6  0.005λ预报距离处的声压误差曲线

    Fig. 6.  Error-frequency curve of ERSM at 0.005λ

    图 7  声场重建示意图

    Fig. 7.  Diagram of sound field reconstruction

    图 8  声场重建误差 (d = 0.5λ)

    Fig. 8.  Errors of sound field reconstruction (d = 0.5λ)

    图 9  重建声压误差随测试距离变化曲线 (a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz

    Fig. 9.  Curves of pressure error with different test distances: (a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz

    图 10  500 Hz不同测试距离处的重建声压切线 (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    Fig. 10.  Pressure profiles with different test distances at 500 Hz: (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    图 11  1000 Hz不同测试距离处的重建声压切线 (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    Fig. 11.  Pressure profiles with different test distances at 1000 Hz: (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    图 12  1500 Hz不同测试距离处的重建声压切线 (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    Fig. 12.  Pressure profiles with different test distances at 1500 Hz: (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    图 13  实验装置连接示意图

    Fig. 13.  Diagram of measurement

    图 14  实验现场图 (a) 矩形钢板; (b) 传声器阵列

    Fig. 14.  Experimental facilities: (a) Rectangular steel plate; (b) microphones array

    图 15  不同距离处的重建声压误差 (a) 100 Hz; (b) 200 Hz; (c) 400 Hz

    Fig. 15.  Reconstruction error with different test distances: (a) 100 Hz; (b) 200 Hz; (c) 400 Hz

    图 16  不同测试距离的实验重建声压(100 Hz) (a) 理论值; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM (0.54 m); (e) ERSM(0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM (0.54 m); (k) IWERSM(0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    Fig. 16.  Experimental acoustic pressure reconstruction at 100 Hz: (a) Theoretical; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM(0.54 m); (e) ERSM (0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM(0.54 m); (k) IWERSM (0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    图 18  不同测试距离的实验重建声压(400 Hz) (a) 理论值; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM (0.54 m); (e) ERSM(0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM (0.54 m); (k) IWERSM(0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    Fig. 18.  Experimental acoustic pressure reconstruction at 400 Hz: (a) Theoretical; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM(0.54 m); (e) ERSM (0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM(0.54 m); (k) IWERSM (0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    图 17  不同测试距离的实验重建声压(200 Hz) (a) 理论值; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM (0.54 m); (e) ERSM(0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM (0.54 m); (k) IWERSM(0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    Fig. 17.  Experimental acoustic pressure reconstruction at 200 Hz: (a) Theoretical; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM(0.54 m); (e) ERSM (0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM(0.54 m); (k) IWERSM (0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    表 1  仿真参数

    Table 1.  Parameters of simulations

    仿真参数数值/单位仿真参数数值/单位
    矩形板长度1 m弹性模量$ 2.1\times10^{11}\;{\rm{N}}/{\rm{m}}^{2}$
    矩形板宽度0.8 m泊松比0.3
    矩形板厚度0.0036 m损耗因子0.002
    矩形板密度$ 7800\;{\rm{kg}}/{\rm{m}}^{3}$简谐力幅值1 N
    空气密度$ 1.29\;{\rm{kg}}/{\rm{m}}^{3}$激励点位置矩形板中心
    空气声速340 m/s参考声压$ 2\times10^{-5}\;{\rm{Pa}}$
    矩形活塞长0.025 m矩形活塞宽0.02 m
    下载: 导出CSV
  • [1]

    聂永发, 朱海潮 2014 物理学报 63 104303Google Scholar

    Nie Y F, Zhu H C 2014 Acta Phys. Sin. 63 104303Google Scholar

    [2]

    Bi C X, Chen X Z, Chen J, Zhou R 2005 Sci. China Ser. E: Technol. Sci. 48 338Google Scholar

    [3]

    李卫兵, 陈剑, 毕传兴, 陈心昭 2006 物理学报 55 1264Google Scholar

    Li W B, Chen J, Bi C X, Chen X Z 2006 Acta Phys. Sin. 55 1264Google Scholar

    [4]

    张小正, 毕传兴, 徐亮, 陈心昭 2010 物理学报 59 5564Google Scholar

    Zhang X Z, Bi C X, Xu L, Chen X Z 2010 Acta Phys. Sin. 59 5564Google Scholar

    [5]

    Pinho M E V 2004 ABCM Symposium Series in Mechatronics (Vol. 1) Sao Paulo, Brazil, November 10−14, 2004 p590

    [6]

    Valdivia N P, Williams E G 2006 J. Acoust. Soc. Am. 120 3694Google Scholar

    [7]

    Zhang Y B 2009 J. Acoust. Soc. Am. 126 1257Google Scholar

    [8]

    Oudompheng B, Pereira A, Picard C, Leclere Q, Nicolas B 2014 5 th Berlin Beamforming Conference Berlin, Germany, February 19−20, 2014 p12

    [9]

    Xu L, Bi C X, Zhang X, Zheng C J 2014 INTERNOISE 2014-43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control Melbourne, Australia, November 16−19, 2014 p458

    [10]

    蔡鹏飞 2015 硕士学位论文 (重庆: 重庆大学)

    Cai P F 2015 M. S. Thesis (Chongqing: Chongqing University) (in Chinese)

    [11]

    Ping G L, Chu Z G, Xu Z M, Shen L B 2017 Sci. Rep. 7 43458Google Scholar

    [12]

    Fernandez-Grande E, Xenaki A 2015 Proceedings of Internoise 2015-44th International Congress and Exposition on Noise Control Engineering San Francisco, United States, August 9−12, 2015 p10

    [13]

    Bi C X, Liu Y, Xu L, Zhang Y B 2017 J. Acoust. Soc. Am. 141 73Google Scholar

    [14]

    Hald J 2020 J. Acoust. Soc. Am. 147 2211Google Scholar

    [15]

    李加庆, 陈进, 杨超, 贾文强 2008 物理学报 57 4258Google Scholar

    Li J Q, Chen J, Yang C, Jia W Q 2008 Acta Phys. Sin. 57 4258Google Scholar

    [16]

    商德江, 钱治文, 何元安, 肖妍 2018 物理学报 67 084301Google Scholar

    Shang D J, Qian Z W, He Y A, Xiao Y 2018 Acta Phys. Sin. 67 084301Google Scholar

    [17]

    朱拥勇, 刘宝 2016 噪声与振动控制 36 11

    Zhu Y Y, Liu B 2016 Noise Vibra. Contrl. 36 11

    [18]

    任惠娟, 姚展, 薛小庆, 刘婷, 雷烨 2016 陕西科技大学学报 34 183Google Scholar

    Ren H J, Yao Z, Xue X Q, Liu T, Lei Y 2016 J. Shanxi Univ. Sci. Technol. 34 183Google Scholar

    [19]

    钱治文, 商德江, 孙启航, 何元安, 翟京生 2019 物理学报 68 024301Google Scholar

    Qian Z W, Shang D J, Sun Q H, He Y A, Zhai J S 2019 Acta Phys. Sin. 68 024301Google Scholar

    [20]

    王斌, 汤渭霖, 范军 2008 声学学报 33 226Google Scholar

    Wang B, Tang W L, Fan J 2008 Acta Acust. 33 226Google Scholar

    [21]

    何祚镛, 赵玉芳 1981 声学理论基础 (北京: 国防工业出版社) 第237−241页

    He Z Y, Zhao Y F 1981 Theories of Acoustics (Beijing: National Defense Industry Press) pp237−241 (in Chinese)

    [22]

    Antoni J 2012 J. Acoust. Soc. Am. 131 2873Google Scholar

  • [1] 周达仁, 卢奂采, 程相乐, McFarland D. Michael. 基于反射系数估算的半空间边界阻抗和声源直接辐射重构. 物理学报, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [2] 张揽月, 丁丹丹, 杨德森, 时胜国, 朱中锐. 阵元随机均匀分布球面阵列联合噪声源定位方法. 物理学报, 2017, 66(1): 014303. doi: 10.7498/aps.66.014303
    [3] 段晓敏, 赵新玉, 孙华飞. 矩形表面波探头声场的高斯声束叠加法. 物理学报, 2014, 63(1): 014301. doi: 10.7498/aps.63.014301
    [4] 宋玉来, 卢奂采, 金江明. 单层传声器阵列信号空间重采样的声波分离方法. 物理学报, 2014, 63(19): 194305. doi: 10.7498/aps.63.194305
    [5] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场. 物理学报, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [6] 毕传兴, 胡定玉, 张永斌, 徐亮. 基于等效源法和双面质点振速测量的声场分离方法. 物理学报, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [7] 毕传兴, 郭明建, 张永斌, 徐亮. 基于声压梯度参考的部分场分解方法及实验研究. 物理学报, 2012, 61(15): 154301. doi: 10.7498/aps.61.154301
    [8] 徐亮, 毕传兴, 王慧, 许滨, 陈心昭. 全息声压场的加权范数外推方法. 物理学报, 2011, 60(11): 114304. doi: 10.7498/aps.60.114304
    [9] 陈志敏, 朱海潮, 毛荣富. 循环平稳声场的声源定位研究. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
    [10] 毕传兴, 袁艳, 贺春东, 徐亮. 基于分布源边界点法的局部近场声全息技术. 物理学报, 2010, 59(12): 8646-8654. doi: 10.7498/aps.59.8646
    [11] 毕传兴, 张永斌, 徐亮, 陈心昭. 基于声压-振速测量的平面近场声全息实验研究. 物理学报, 2010, 59(2): 1108-1115. doi: 10.7498/aps.59.1108
    [12] 张小正, 毕传兴, 徐亮, 陈心昭. 基于波叠加法的近场声全息空间分辨率增强方法. 物理学报, 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [13] 张永斌, 徐亮, 毕传兴, 陈心昭. 基于声压-振速测量的单面声场分离技术. 物理学报, 2009, 58(12): 8364-8371. doi: 10.7498/aps.58.8364
    [14] 张海滨, 蒋伟康, 万 泉. 适用于循环平稳声场的基于波叠加法的近场声全息技术. 物理学报, 2008, 57(1): 313-321. doi: 10.7498/aps.57.313
    [15] 徐 亮, 毕传兴, 陈 剑, 陈心昭. 基于波叠加法的patch近场声全息及其实验研究. 物理学报, 2007, 56(5): 2776-2783. doi: 10.7498/aps.56.2776
    [16] 李卫兵, 陈 剑, 毕传兴, 陈心昭. 联合波叠加法的全息理论与实验研究. 物理学报, 2006, 55(3): 1264-1270. doi: 10.7498/aps.55.1264
    [17] 李卫兵, 陈 剑, 于 飞, 毕传兴, 陈心昭. 统计最优平面近场声全息原理与声场分离技术. 物理学报, 2005, 54(3): 1253-1260. doi: 10.7498/aps.54.1253
    [18] 于 飞, 陈 剑, 李卫兵, 陈心昭. 声场分离技术及其在近场声全息中的应用. 物理学报, 2005, 54(2): 789-797. doi: 10.7498/aps.54.789
    [19] 毕传兴, 陈心昭, 陈 剑. 半自由声场的全息重建和预测实验研究. 物理学报, 2004, 53(12): 4268-4276. doi: 10.7498/aps.53.4268
    [20] 于 飞, 陈心昭, 李卫兵, 陈 剑. 空间声场全息重建的波叠加方法研究. 物理学报, 2004, 53(8): 2607-2613. doi: 10.7498/aps.53.2607
计量
  • 文章访问数:  5730
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2021-02-15
  • 上网日期:  2021-06-21
  • 刊出日期:  2021-07-05

/

返回文章
返回