搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形表面波探头声场的高斯声束叠加法

段晓敏 赵新玉 孙华飞

引用本文:
Citation:

矩形表面波探头声场的高斯声束叠加法

段晓敏, 赵新玉, 孙华飞

Multi-Gaussian beam model for ultrasonic surface waves with angle beam rectangular transducers

Duan Xiao-Min, Zhao Xin-Yu, Sun Hua-Fei
PDF
导出引用
  • 利用矩形压电晶片和有机玻璃楔块折射可激励出超声表面波,广泛用于固体近表面缺陷检测和材料特性测量. 由于描述表面波三维声场的理论方法还鲜有报道,因而主要采用简化的表面波二维声场模型来定量分析这类问题. 高斯声束模型近些年被广泛应用于解决超声体波传播的各种复杂问题,然而,目前还没有将其扩展应用到超声表面波的声场的计算中. 通过结合表面波格林方程和矩形换能器的高斯声束模型,推导出基于高斯声束叠加的表面波三维声场解析解. 进一步,将该方法与点源叠加的数值解进行了分析比较,计算结果表明表面波声场的高斯声束叠加方法在具有较好计算精度的同时,还具有更快的计算效率.
    Rayleigh waves propagating in an elastic surface are commonly used for the near surface flaw detection and material characterization. However, unlike the bulk wave case, there are seldom three-dimensional models to be provided for the Rayleigh waves. In the past decade, multi-Gaussian beam models have been gradually developed and perfectly applied to solve many complicated propagation problems of bulk waves. However, up to date they have not been extended to the simulation of the Rayleigh waves. By combining the Rayleigh wave Green function and the multi-Gaussian beam model, a three-dimensional Rayleigh wave model is presented to calculate the beam fields radiated from a rectangular transducer mounted on the Lucite wedge. Furthermore, some simulation results of the provided method are compared to those of a more exacted point source model. It is shown that the multi-Gaussian surface wave model has good capability in both computational accuracy and efficiency.
    • 基金项目: 国家自然科学基金(批准号:51105033,61179031)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51105033, 61179031).
    [1]

    Fan Y, Dixon S, Edwards R S, Jian X 2007 NDT&E International 40 471

    [2]

    Yuan L, Sun K H, Cui Y P, Shen Z H, Ni X W 2012 Acta Phys. Sin. 61 014210 (in Chinese) [袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武 2012 物理学报 61 014210]

    [3]

    Rose J L 1999 Ultrasonic Waves in Solid Media Cambridge University Press

    [4]

    Schmerr L W, Sedov L 2011 AIP Conf. Proc. 1335 771

    [5]

    Wen J J, Breazeale M A 1988 J. Acoust. Soc. Amer. 83 1752

    [6]

    Zhao X Y, Gang T, Zhang B X 2008 Acta Phys. Sin. 57 5049 (in Chinese) [赵新玉, 刚铁, 张碧星 2008 物理学报 57 5049]

    [7]

    Spies M 2000 NDT&E International 33 155

    [8]

    Huang R J, Schmerr L W, Sedov A 2007 Res. Nondestr. Eval. 18 193

    [9]

    Yu J, Zhang D, Liu X Z, Gong X F, Song F X 2007 Acta Phys. Sin. 56 5909 (in Chinese) [于洁, 章东, 刘晓宙, 龚秀芬, 宋富先 2007 物理学报 56 5909]

    [10]

    Zhao X Y, Gang T 2009 Ultrasonics 49 126

    [11]

    Aki K, Richards P G 1980 Quantitative Seismology-Theory and Methods (University Science Books)

    [12]

    Schmerr L W 1998 Fundamentals of Ultrasonic Nondestructive Evaluation-A Modeling Approach, Plenum New York

    [13]

    Schmerr L W, Song S J 2007 Ultrasonic Nondestructive Evaluation Systems-Models and Measurements (Springer)

    [14]

    Ding D, Zhang Y, Liu J 2003 J. Acoust. Soc. Am. 113 3043

  • [1]

    Fan Y, Dixon S, Edwards R S, Jian X 2007 NDT&E International 40 471

    [2]

    Yuan L, Sun K H, Cui Y P, Shen Z H, Ni X W 2012 Acta Phys. Sin. 61 014210 (in Chinese) [袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武 2012 物理学报 61 014210]

    [3]

    Rose J L 1999 Ultrasonic Waves in Solid Media Cambridge University Press

    [4]

    Schmerr L W, Sedov L 2011 AIP Conf. Proc. 1335 771

    [5]

    Wen J J, Breazeale M A 1988 J. Acoust. Soc. Amer. 83 1752

    [6]

    Zhao X Y, Gang T, Zhang B X 2008 Acta Phys. Sin. 57 5049 (in Chinese) [赵新玉, 刚铁, 张碧星 2008 物理学报 57 5049]

    [7]

    Spies M 2000 NDT&E International 33 155

    [8]

    Huang R J, Schmerr L W, Sedov A 2007 Res. Nondestr. Eval. 18 193

    [9]

    Yu J, Zhang D, Liu X Z, Gong X F, Song F X 2007 Acta Phys. Sin. 56 5909 (in Chinese) [于洁, 章东, 刘晓宙, 龚秀芬, 宋富先 2007 物理学报 56 5909]

    [10]

    Zhao X Y, Gang T 2009 Ultrasonics 49 126

    [11]

    Aki K, Richards P G 1980 Quantitative Seismology-Theory and Methods (University Science Books)

    [12]

    Schmerr L W 1998 Fundamentals of Ultrasonic Nondestructive Evaluation-A Modeling Approach, Plenum New York

    [13]

    Schmerr L W, Song S J 2007 Ultrasonic Nondestructive Evaluation Systems-Models and Measurements (Springer)

    [14]

    Ding D, Zhang Y, Liu J 2003 J. Acoust. Soc. Am. 113 3043

计量
  • 文章访问数:  2094
  • PDF下载量:  730
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-20
  • 修回日期:  2013-09-17
  • 刊出日期:  2014-01-05

矩形表面波探头声场的高斯声束叠加法

  • 1. 北京理工大学数学学院, 北京 100081;
  • 2. 大连交通大学理学院, 大连 116028;
  • 3. 北京理工大学机械与车辆学院, 北京 100081;
  • 4. 大连交通大学材料科学与工程学院, 大连 116028
    基金项目: 

    国家自然科学基金(批准号:51105033,61179031)资助的课题.

摘要: 利用矩形压电晶片和有机玻璃楔块折射可激励出超声表面波,广泛用于固体近表面缺陷检测和材料特性测量. 由于描述表面波三维声场的理论方法还鲜有报道,因而主要采用简化的表面波二维声场模型来定量分析这类问题. 高斯声束模型近些年被广泛应用于解决超声体波传播的各种复杂问题,然而,目前还没有将其扩展应用到超声表面波的声场的计算中. 通过结合表面波格林方程和矩形换能器的高斯声束模型,推导出基于高斯声束叠加的表面波三维声场解析解. 进一步,将该方法与点源叠加的数值解进行了分析比较,计算结果表明表面波声场的高斯声束叠加方法在具有较好计算精度的同时,还具有更快的计算效率.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回