搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速三角翼上横流不稳定性的实验研究

牛海波 易仕和 刘小林 霍俊杰 冈敦殿

引用本文:
Citation:

高超声速三角翼上横流不稳定性的实验研究

牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿

Experimental study of crossflow instability in a Mach 6 delta wing flow

Niu Hai-Bo, Yi Shi-He, Liu Xiao-Lin, Huo Jun-Jie, Gang Dun-Dian
PDF
HTML
导出引用
  • 本文研究了三角翼迎风面边界层中的非定常横流不稳定性. 实验在马赫6低噪声风洞中进行, 模型为平板构型, 攻角为5°和10°. 通过温敏漆技术, 观察到在远离头部的区域, 边界层转捩阵面光滑且平行于前缘, 通过Kulite高频脉动压力传感器得到的功率谱密度曲线中有明显的f ≈ 10 kHz的扰动波信号峰值. 利用基于纳米示踪的平面激光散射技术, 在平行前缘方向对此区域进行流场可视化, 观察到规则的向下游卷起的涡结构, 形态与数值模拟中的横流涡形态一致, 且涡结构的位置不是固定的, 因此该10 kHz的信号为非定常横流波信号. 只有在边界层为层流时, 才能够观察到明显的10 kHz左右的非定常横流波信号峰值, 边界层转捩中或转捩后, 脉动压力的功率谱密度曲线为低频成分占主导的宽频分布. 提高单位雷诺数, 同一压力测点位置得到的横流波幅值先增长至饱和而后衰减. 增大攻角时, 横流行波幅值增长更加迅速, 在较低的雷诺数下就可以增长至饱和. 另外, 还利用Kulite传感器阵列测量了横流波的相速度和传播角度, 文中所测状态下, 相速度分布在0.24—0.32倍来流速度之间, 传播角度与来流方向夹角在40°—60°之间. 并且, 增大攻角时, 横流波的相速度变大, 传播角减小.
    In this paper, the traveling crossflow instability in the boundary layer on the windward side of a delta wing is studied. The experiments are carried out in a Mach 6 low-noise wind tunnel, with the angles of attack of the model being 5° and 10°, and the Reynolds number being in a range of 2.43 × 106–14.21 × 106 m–1. The wall fluctuation pressure is measured by fast-response Kulite pressure transducers. The power spectrum density (PSD) analysis is conducted to obtain the disturbance waves' development process in the boundary layer. The temperature-sensitive paints (TSPs) and nano-tracer based planar laser scattering (NPLS) technique are also used. From the TSP results, the boundary layer transition near the leading edge of the delta wing is smooth and parallel to the leading edge. A peak around 10 kHz in power spectrum density is detected by the fast-response pressure sensor, which may be caused by the traveling crossflow waves. To verify this dominant mode, an NPLS image in the plane of n = 36 mm is obtained. The shapes of vortex structures correspond to the shapes of the crossflow vortices from the numerical simulation. Only when the boundary layer is laminar can the traveling crossflow wave signal be observed from the PSD curves. When the boundary layer is at a transitional or turbulent phase, the low-frequency component is dominant in the PSD curve. With the increase of Reynolds number, the characteristic frequency of the crossflow wave increases, and the wave’s amplitude first increases and then decreases. Moreover, the angle of attack effect is obtained. The increasing of the angle of attack can make the traveling crossflow wave grow faster and saturate, attenuate at the position closer to the leading edge of the delta wing or at a lower Reynolds number. By sensor pairs composed of three Kulite transducers, the phase velocity and the propagation angle of the traveling crossflow wave are investigated. The dimensionless phase velocities of the traveling wave are in ranges of 0.24–0.26 and 0.26–0.32 at 5° and 10° angles of attack, respectively. The propagation angles are at 50°–60° and 40°–55° at the angles of attack of 5° and 10°, respectively. At a larger angle of attack, the traveling wave’s propagation angel is smaller, but the phase velocity is bigger. It may be because the spanwise pressure gradient is higher at a larger angle of attack, and then the crossflow velocity is stronger.
      通信作者: 冈敦殿, gdd_nudt@163.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2019YFA0405300)、国家自然科学基金(批准号: 12002375, 11902354)和国防科技大学科研计划项目计划(批准号: ZK20-12)资助的课题
      Corresponding author: Gang Dun-Dian, gdd_nudt@163.com
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2019YFA0405300), the National Natural Science Foundation of China (Grant Nos. 12002375, 11902354), and the Project of National University of Defense Technology (Grant No. ZK20-12)
    [1]

    Schneider S P 2004 Prog. Aerosp. Sci. 40 1Google Scholar

    [2]

    Mack L M 1975 AIAA J. 13 278Google Scholar

    [3]

    Saric W S, Reed H L, White E B 2003 Annu. Rev. Fluid Mech. 35 413Google Scholar

    [4]

    Deyhle H, Bippes H 1996 J. Fluid Mech. 316 73Google Scholar

    [5]

    Poll D I A 1985 J. Fluid Mech. 150 329Google Scholar

    [6]

    Malik M R, Li F, Choudhari M, Chang C L 1999 J. Fluid Mech. 399 85Google Scholar

    [7]

    Edelman J B, Schneider S P 2018 AIAA J. 56 182Google Scholar

    [8]

    Craig S A, Saric W S 2016 J. Fluid Mech. 808 224Google Scholar

    [9]

    Corke T, Arndt A, Matlis E, Semper M 2018 J. Fluid Mech. 856 822Google Scholar

    [10]

    Arndt A, Corke T, Matlis E, Semper M 2020 J. Fluid Mech. 887 A30Google Scholar

    [11]

    Moyes A J, Paredes P, Kocian T S, Reed H L 2017 J. Fluid Mech. 812 370Google Scholar

    [12]

    Xu G, Chen J, Liu G, Dong S, Fu S 2019 J. Fluid Mech. 873 914Google Scholar

    [13]

    Ward C A C 2014 Ph. D. Dissertation (Indiana: Pudue University)

    [14]

    Borg M P, Kimmel R L, Stanfield S 2013 43rd Fluid Dynamics Conference San Diego, CA, June 24−27, 2013 p2737

    [15]

    Borg M P, Kimmel R L, Stanfield S 2015 J. Spacecraft Rockets 52 664Google Scholar

    [16]

    Li F, Choudhari M, Chang C L, White J 2010 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Chicago, Illinois, June 28−July 1, 2010 p4643

    [17]

    Niu H B, Yi S H, Liu X L, Lu X G, He L 2019 AIAA J. 57 5566Google Scholar

    [18]

    刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar

    [19]

    刘小林, 易仕和, 牛海波, 陆小革 2018 物理学报 67 214701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G 2018 Acta Phys. Sin. 67 214701Google Scholar

    [20]

    Niu H, Yi S, Liu X, Lu X, Gang D 2020 Chin. J. Aeronaut. 33 1889Google Scholar

    [21]

    Niu H, Yi S, Liu X, Huo J, Jin L 2020 Int. J. Heat Fluid Flow 86 108746Google Scholar

    [22]

    Lu X, Yi S, He L, Liu X, Niu H 2020 Fluid Dyn. 55 111Google Scholar

    [23]

    Cook W J, Felderman E J 1970 AIAA J. 8 1366Google Scholar

    [24]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2009 Sci. China 52 3640Google Scholar

    [25]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489Google Scholar

    [26]

    Liu X L, Yi S H, Xu X W, Shi Y, Ouyang T C, Xiong H 2019 Phys. Fluids 31 074108Google Scholar

    [27]

    陆昌根, 朱晓清, 沈露予 2017 物理学报 66 204702Google Scholar

    Lu C G, Zhu X Q, Shen L Y 2017 Acta Phys. Sin. 66 204702Google Scholar

    [28]

    沈露予陆昌根 2017 物理学报 66 014703Google Scholar

    Shen L Y, Lu C G 2017 Acta Phys. Sin. 66 014703Google Scholar

    [29]

    Tian L, Yi S, Zhao Y, He L, Cheng Z 2009 Sci. China, Ser. G 52 1357Google Scholar

    [30]

    赵磊 2016 博士学位论文 (天津: 天津大学)

    Zhao L 2016 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)

    [31]

    Poggie J, Kimmel R L, Schwoerke S N 2000 AIAA J. 38 251Google Scholar

  • 图 1  三角平板示意图

    Fig. 1.  Schematic diagram of the delta wing.

    图 2  三角翼迎风面热流云图(Re = 4.83 × 106 m–1, α = 5°)

    Fig. 2.  Heat flux contour on the windward (Re = 4.83 × 106 m–1, α = 5°).

    图 3  K1—K4测点的功率谱密度结果(Re = 3.51 × 106 m–1, α = 5°)

    Fig. 3.  PSD results from sensors K1—K4 (Re = 3.51 × 106 m–1, α = 5°).

    图 4  三角翼迎风面平行于前缘方向的NPLS图片 (Re = 4.83 × 106 m–1, α = 5°, n = 36 mm)

    Fig. 4.  NPLS image on the plane parallel to the leading edge (Re = 4.83 × 106 m–1, α = 5°, n = 36 mm).

    图 5  三角翼5°攻角迎风面K2-K4所测脉动压力的PSD结果 (a) 2.43 × 106 m–1; (b) 4.83 × 106 m–1; (c) 14.21 × 106 m–1

    Fig. 5.  PSD results of sensors K2-K4 on the windward side at α = 5°: (a) 2.43 × 106 m–1; (b) 4.83 × 106 m–1; (c) 14.21 × 106 m–1.

    图 6  三角翼5°攻角迎风面TSP结果 (a) 2.43 × 106 m–1; (b) 4.83 × 106 m–1; (c) 14.21 × 106 m–1

    Fig. 6.  TSP results on the windward side at α = 5°: (a) 2.43 × 106 m–1; (b) 4.83 × 106 m–1; (c) 14.21 × 106 m–1.

    图 7  图6得到的K2—K4所在直线的热流分布

    Fig. 7.  Heat flux profiles in the line of sensors K2—K4 from Fig. 6.

    图 8  K2和K3传感器得到的5°攻角三角翼迎风面的PSD结果 (a) K2; (b) K3

    Fig. 8.  PSD results of K2 and K3 in different Reynold number on the windward at α = 5°: (a) K2; (b) K3.

    图 9  不同频率下的幅值随雷诺数增长曲线 (a) K2处; (b) K3处

    Fig. 9.  Growth of the amplitude in different frequency: (a) K2; (b) K3.

    图 10  10°攻角下K2-K4得到的PSD结果 (a) 2.44 × 106 m–1; (b) 4.83 × 106 m–1; (c) 11.10 × 106 m–1

    Fig. 10.  PSD results of sensors K2-K4 on the windward side at α = 10°: (a) 2.44 × 106 m–1; (b) 4.83 × 106 m–1; (c) 11.10 × 106 m–1.

    图 11  10°攻角三角翼迎风面的PSD结果 (a) K2; (b) K3

    Fig. 11.  PSD results on the windward side of the delta wing at α = 10°: (a) K2; (b) K3.

    图 12  K2位置处10 kHz扰动波幅值随雷诺数的变化

    Fig. 12.  Growth of the amplitude at frequency of 10 kHz at K2.

    图 13  波阵面以及坐标系

    Fig. 13.  Schematic diagram of the wave front and coordinate system.

    图 14  K7—K9传感器所测5°攻角迎风面PSD结果 (a) K7; (b) K8; (c) K9

    Fig. 14.  PSD results from sensors K7—K9 at α = 5°: (a) K7; (b) K8; (c) K9.

    图 15  三个传感器对所测信号的延迟时间τ和相关系数γ2

    Fig. 15.  Delay time τ and correlation coefficients γ2 of signal at three sensor pairs.

    图 16  非定常横流波的相速度和传播角度(α = 5°, Re = 2.43 × 106 m–1)

    Fig. 16.  Phase velocity and wave angle of traveling crossflow waves (α = 5°, Re = 2.43 × 106 m–1).

    图 17  不同攻角和雷诺数下横流波的相速度和传播角度 (a) 无量纲相速度; (b) 传播角度

    Fig. 17.  Dimensionless phase velocity and wave propagation angle of crossflow waves at different conditions: (a) Dimensionless phase velocity; (b) wave propagation angle.

    表 1  Kulite阵列的坐标

    Table 1.  Coordinate of the two Kulite arrays.

    Sensor No.x/mmy/mm
    K3403.8859.14
    K5406.8856.14
    K6409.8856.14
    K730050.84
    K830046.84
    K930252.84
    下载: 导出CSV
  • [1]

    Schneider S P 2004 Prog. Aerosp. Sci. 40 1Google Scholar

    [2]

    Mack L M 1975 AIAA J. 13 278Google Scholar

    [3]

    Saric W S, Reed H L, White E B 2003 Annu. Rev. Fluid Mech. 35 413Google Scholar

    [4]

    Deyhle H, Bippes H 1996 J. Fluid Mech. 316 73Google Scholar

    [5]

    Poll D I A 1985 J. Fluid Mech. 150 329Google Scholar

    [6]

    Malik M R, Li F, Choudhari M, Chang C L 1999 J. Fluid Mech. 399 85Google Scholar

    [7]

    Edelman J B, Schneider S P 2018 AIAA J. 56 182Google Scholar

    [8]

    Craig S A, Saric W S 2016 J. Fluid Mech. 808 224Google Scholar

    [9]

    Corke T, Arndt A, Matlis E, Semper M 2018 J. Fluid Mech. 856 822Google Scholar

    [10]

    Arndt A, Corke T, Matlis E, Semper M 2020 J. Fluid Mech. 887 A30Google Scholar

    [11]

    Moyes A J, Paredes P, Kocian T S, Reed H L 2017 J. Fluid Mech. 812 370Google Scholar

    [12]

    Xu G, Chen J, Liu G, Dong S, Fu S 2019 J. Fluid Mech. 873 914Google Scholar

    [13]

    Ward C A C 2014 Ph. D. Dissertation (Indiana: Pudue University)

    [14]

    Borg M P, Kimmel R L, Stanfield S 2013 43rd Fluid Dynamics Conference San Diego, CA, June 24−27, 2013 p2737

    [15]

    Borg M P, Kimmel R L, Stanfield S 2015 J. Spacecraft Rockets 52 664Google Scholar

    [16]

    Li F, Choudhari M, Chang C L, White J 2010 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Chicago, Illinois, June 28−July 1, 2010 p4643

    [17]

    Niu H B, Yi S H, Liu X L, Lu X G, He L 2019 AIAA J. 57 5566Google Scholar

    [18]

    刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar

    [19]

    刘小林, 易仕和, 牛海波, 陆小革 2018 物理学报 67 214701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G 2018 Acta Phys. Sin. 67 214701Google Scholar

    [20]

    Niu H, Yi S, Liu X, Lu X, Gang D 2020 Chin. J. Aeronaut. 33 1889Google Scholar

    [21]

    Niu H, Yi S, Liu X, Huo J, Jin L 2020 Int. J. Heat Fluid Flow 86 108746Google Scholar

    [22]

    Lu X, Yi S, He L, Liu X, Niu H 2020 Fluid Dyn. 55 111Google Scholar

    [23]

    Cook W J, Felderman E J 1970 AIAA J. 8 1366Google Scholar

    [24]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2009 Sci. China 52 3640Google Scholar

    [25]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489Google Scholar

    [26]

    Liu X L, Yi S H, Xu X W, Shi Y, Ouyang T C, Xiong H 2019 Phys. Fluids 31 074108Google Scholar

    [27]

    陆昌根, 朱晓清, 沈露予 2017 物理学报 66 204702Google Scholar

    Lu C G, Zhu X Q, Shen L Y 2017 Acta Phys. Sin. 66 204702Google Scholar

    [28]

    沈露予陆昌根 2017 物理学报 66 014703Google Scholar

    Shen L Y, Lu C G 2017 Acta Phys. Sin. 66 014703Google Scholar

    [29]

    Tian L, Yi S, Zhao Y, He L, Cheng Z 2009 Sci. China, Ser. G 52 1357Google Scholar

    [30]

    赵磊 2016 博士学位论文 (天津: 天津大学)

    Zhao L 2016 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)

    [31]

    Poggie J, Kimmel R L, Schwoerke S N 2000 AIAA J. 38 251Google Scholar

  • [1] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [2] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [3] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [4] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报, 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [5] 裴世鑫, 徐辉, 孙婷婷, 李金花. 正三角型三芯光纤中等腰对称平面波的调制不稳定性分析. 物理学报, 2018, 67(5): 054203. doi: 10.7498/aps.67.20171650
    [6] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [7] 张冬冬, 谭建国, 李浩, 侯聚微. 基于三角波瓣混合器的超声速流场精细结构和掺混特性. 物理学报, 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [8] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [9] 李志辉, 彭傲平, 方方, 李四新, 张顺玉. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究. 物理学报, 2015, 64(22): 224703. doi: 10.7498/aps.64.224703
    [10] 陈涵瀛, 高璞珍, 谭思超, 付学宽. 自然循环流动不稳定性的多目标优化极限学习机预测方法. 物理学报, 2014, 63(20): 200505. doi: 10.7498/aps.63.200505
    [11] 张文超, 谭思超, 高璞珍. 基于Lyapunov指数的摇摆条件下自然循环流动不稳定性混沌预测. 物理学报, 2013, 62(6): 060502. doi: 10.7498/aps.62.060502
    [12] 张月, 卓青青, 刘红侠, 马晓华, 郝跃. 功率MOSFET的负偏置温度不稳定性效应中的平衡现象. 物理学报, 2013, 62(16): 167305. doi: 10.7498/aps.62.167305
    [13] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [14] 李锦, 刘大钊. 昼夜节律下心率变异性信号的熵信息和谱特征. 物理学报, 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [15] 张良英, 金国祥, 曹力. 具有频率噪声的单模激光线性模型随机共振. 物理学报, 2011, 60(4): 044207. doi: 10.7498/aps.60.044207
    [16] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究. 物理学报, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [17] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [18] 宋艳丽. 简谐速度噪声及其与势场之间的频率共振. 物理学报, 2006, 55(12): 6482-6487. doi: 10.7498/aps.55.6482
    [19] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析. 物理学报, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  3292
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 修回日期:  2021-02-09
  • 上网日期:  2021-06-24
  • 刊出日期:  2021-07-05

/

返回文章
返回