搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正三角型三芯光纤中等腰对称平面波的调制不稳定性分析

裴世鑫 徐辉 孙婷婷 李金花

引用本文:
Citation:

正三角型三芯光纤中等腰对称平面波的调制不稳定性分析

裴世鑫, 徐辉, 孙婷婷, 李金花

Modulation instabilities in equilateral three-core optical fibers for isosceles-triangle symmetric continuous waves

Pei Shi-Xin, Xu Hui, Sun Ting-Ting, Li Jin-Hua
PDF
导出引用
  • 详细分析了正三角型三芯光纤中等腰对称平面波的调制不稳定性.等腰对称平面波即两芯中场完全相同,第三芯中场入射功率与其他两芯中不同的平面波,其存在的前提是入射光总功率(P)必须大于某最小值(Pmin),该最小值取决于光纤的线性耦合系数和非线性系数.对一给定的总功率P ≥ qslant Pmin,令一芯中的入射功率为P1,其他两芯中入射功率均为P2,有两种形式的场分布:一种是P1始终大于P2,随着P的增加,P1越来越大,P2越来越小,依线性稳定性分析方法,该场分布对应的增益谱主要特征与双芯光纤非对称平面波的增益谱相似;另一种是随着P的增加,P1越来越小,P2越来越大,使用同样的分析方法,发现该场分布下增益谱与双芯光纤非对称平面波增益谱截然不同,其显著特征是无扰动下,在正常和反常色散区域均可产生不稳定性增益,且在正常色散区域,零扰动频率对应的增益最强;另一方面,耦合系数色散对增益谱的影响在正常和反常色散区域都非常弱,这与其在双芯光纤中的影响截然不同.该结果对基于多芯光纤的模分复用系统非线性效应的研究具有一定的指导意义.
    Modulation instability (MI) of the isosceles-triangle symmetric continuous wave in equilateral three-core fibers (ETCFs) is studied in detail. The so-called isosceles-triangle symmetric continuous wave state is the planar wave where the fields in its two cores are identical but different from the field in the third core, and the premise of its existence is that the total power (P) exceeds a minimum value (Pmin) that depends on the linear coupling coefficient and nonlinear coefficient of ETCFs. For a given total power P (P ≥ qslant Pmin), set the power in one core to be P1, and the powers in the other two cores to be P2 (P=P1 + 2P2), then two kinds of filed distributions will be found. The first kind is for P1 > P2 with P1 becoming more and more large as total power P increases. By the linear stability analysis method, the main characteristics of MI in ETCFs are found which are quite similar to those of the asymmetric continuous wave states in two core optical fibers (TCFs). The other kind is that P1 becomes more and more small and P2 becomes more and more large as total power P increases. Through the same method, the main characteristics of MI in ETCFs are found which are distinctively different from those of the asymmetric continuous wave states in TCFs. On the one hand, MI can be generated in both normal and anomalous dispersion regimes without perturbations. In addition, the zero-perturbation frequency corresponds to the largest gain of MI in the normal dispersion regime. On the other hand, the coupling coefficient dispersion, which can dramatically modify the spectra of MI in TCFs, plays a minor role in both normal and anomalous dispersion regimes in ETCFs. In practical application, the findings in this paper are of guiding significance for studying the nonlinear effects of mode-division multiplexing system based on the multimode or multicore optical fibers.
      通信作者: 李金花, lijinhua@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11605090)、国家自然科学基金理论物理专项(批准号:11447113)和江苏省高校自然科学基金(批准号:14KJB140009)资助的课题.
      Corresponding author: Li Jin-Hua, lijinhua@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11605090), the Special Funds for Theoretical Physics in the National Natural Science Foundation of China (Grant No. 11447113), and the Natural Science Foundation of Jiangsu Provincial Universities, China (Grant No. 14KJB140009).
    [1]

    Alves E O, Cardoso W B, Avelar A T 2016 JOSA B 33 1134

    [2]

    Copie F, Conforti M, Kudlinski A, Trillo S, Mussot A 2017 Opt. Express 25 11283

    [3]

    Armaroli A, Biancalana F 2014 Opt. Lett. 39 4804

    [4]

    Benjamin T B, Feir J E 1967 J. Fluid Mech. 27 417

    [5]

    Fang Y, Yakimenko V E, Babzien M, Fedurin M, Kusche K P, Malone R, Vieira J, Mori W B, Muggli P 2014 Phys. Rev. Lett. 112 045001

    [6]

    Mithun T, Porsezian K 2012 Phys. Rev. A 85 013616

    [7]

    Zhong X, Cheng K, Chiang K S 2014 JOSA B 31 1484

    [8]

    Canabarro A, Santos B, de Lima Bernardo B, Moura A L, Soares W C, de Lima E, Gleria I, Lyra M L 2016 Phys. Rev. A 93 023834

    [9]

    Kibler B, Amrani F, Morin P, Kudlinski A 2016 Phys. Rev. A 93 013857

    [10]

    Armaroli A, Trillo S 2014 JOSA B 31 551

    [11]

    Agrawal G P 1987 Phys. Rev. Lett. 59 880

    [12]

    Tanemura T, Ozeki Y, Kikuchi K 2004 Phys. Rev. Lett. 93 163902

    [13]

    Dinda P T, Porsezian K 2010 JOSA B 27 1143

    [14]

    Bale B G, Boscolo S, Hammani K, Finot C 2011 JOSA B 28 2059

    [15]

    Finot C, Wabnitz S 2015 JOSA B 32 892

    [16]

    Tang D Y, Guo J, Song Y F, Li L, Zhao L M, Shen D Y 2014 Opt. Fiber Technol. 20 610

    [17]

    Kennedy R E, Popov S V, Taylor J R 2006 Opt. Lett. 31 167

    [18]

    Pan N, Huang P, Huang L G, Lei M, Liu W J 2015 Acta Phys. Sin. 64 090504 (in Chinese) [潘楠, 黄平, 黄龙刚, 雷鸣, 刘文军 2015 物理学报 64 090504]

    [19]

    Gu B, Yuan W, Frosz M H, Zhang A P, He S L, Bang O 2012 Opt. Lett. 37 794

    [20]

    Bendahmane A, Mussotm A, Kudlinski A, Szriftgiser P, Conforti M, Wabnitz S, Trillo S 2015 Opt. Express 23 30861

    [21]

    Richardson D J, Fini J M, Nelson L E 2013 Nature Photon. 7 354

    [22]

    Saitoh K, Matsuo S 2016 J. Lightwave Technol. 34 55

    [23]

    Radosavljevic A, Danicic A, Petrovic J, Maluckov A, Haziewski L 2015 JOSA B 32 2520

    [24]

    Sillard P, Molin D, Bigot-Astruc M, Amezcua-Correa A, de Jongh K, Achten F 2016 J. Lightwave Technol. 34 1672

    [25]

    Wang L, Zhu Y J, Qi F H, Li M, Guo R 2015 Chaos 25 063111

    [26]

    Zhang J H, Wang L, Liu C 2017 Proc. R. Soc. A 473 20160681

    [27]

    Wang L, Zhang J H, Liu C, Li M, Qi F H 2016 Phys. Rev. E 93 062217

    [28]

    Cai L Y, Wang X, Wang L, Li M, Liu Y, Shi Y Y 2017 Nonlinear Dyn. 90 2221

    [29]

    Wang L, Jiang D Y, Qi F H, Shi Y Y, Zhao Y C 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 502

    [30]

    Wang L, Wang Z Q, Sun W R, Shi Y Y, Li M, Xu M 2017 Commun. Nonlinear Sci. Numer. Simulat. 47 190

    [31]

    Ding W S, Xi L, Liu L H 2008 Acta Phys. Sin. 57 7705 (in Chinese) [丁万山, 席崚, 柳莲花 2008 物理学报 57 7705]

    [32]

    Trillo S, Wabnitz S, Stegeman G I, Wright E M 1989 JOSA B 6 889

    [33]

    Tasgal R S, Malomed B A 1999 Phys. Scr. 60 418

    [34]

    Xiang Y J, Wen S C, Dai X Y, Fan D Y 2010 Phys. Rev. E 82 056605

    [35]

    Li J H, Chiang K S, Chow K W 2011 JOSA B 28 1693

    [36]

    Li J H, Chiang K S, Malomed B A, Chow K W 2012 J. Phys. B 45 165404

    [37]

    Ding W, Staines O K, Hobbs G D, Gorbach A V, de Nobriga C, Wadsworth W J, Knight J C, Skryabin D V, Strain M J, Sorel M 2012 Opt. Lett. 37 668

    [38]

    Tatsing P H, Mohamadou A, Bouri C, Tiofack G L, Kofane T C 2012 JOSA B 29 3218

    [39]

    Nithyanandan K, Raja R V J, Porsezian K 2013 Phys. Rev. A 87 043805

    [40]

    Zhang J G, Dai X Y, Zhang L F, Xiang Y J, Li Y F 2015 JOSA B 32 1

    [41]

    Ali A K S, Porsezian K, Uthayakumar T 2014 Phys. Rev. E 90 042910

    [42]

    Mohamadou A, Tatsing P H, Tiofack L C G, Tabi C B, Kofane T C 2014 J. Mod. Opt. 61 1670

    [43]

    Li J H, Zhou H, Chiang K S, Xiao S R 2016 JOSA B 33 2357

  • [1]

    Alves E O, Cardoso W B, Avelar A T 2016 JOSA B 33 1134

    [2]

    Copie F, Conforti M, Kudlinski A, Trillo S, Mussot A 2017 Opt. Express 25 11283

    [3]

    Armaroli A, Biancalana F 2014 Opt. Lett. 39 4804

    [4]

    Benjamin T B, Feir J E 1967 J. Fluid Mech. 27 417

    [5]

    Fang Y, Yakimenko V E, Babzien M, Fedurin M, Kusche K P, Malone R, Vieira J, Mori W B, Muggli P 2014 Phys. Rev. Lett. 112 045001

    [6]

    Mithun T, Porsezian K 2012 Phys. Rev. A 85 013616

    [7]

    Zhong X, Cheng K, Chiang K S 2014 JOSA B 31 1484

    [8]

    Canabarro A, Santos B, de Lima Bernardo B, Moura A L, Soares W C, de Lima E, Gleria I, Lyra M L 2016 Phys. Rev. A 93 023834

    [9]

    Kibler B, Amrani F, Morin P, Kudlinski A 2016 Phys. Rev. A 93 013857

    [10]

    Armaroli A, Trillo S 2014 JOSA B 31 551

    [11]

    Agrawal G P 1987 Phys. Rev. Lett. 59 880

    [12]

    Tanemura T, Ozeki Y, Kikuchi K 2004 Phys. Rev. Lett. 93 163902

    [13]

    Dinda P T, Porsezian K 2010 JOSA B 27 1143

    [14]

    Bale B G, Boscolo S, Hammani K, Finot C 2011 JOSA B 28 2059

    [15]

    Finot C, Wabnitz S 2015 JOSA B 32 892

    [16]

    Tang D Y, Guo J, Song Y F, Li L, Zhao L M, Shen D Y 2014 Opt. Fiber Technol. 20 610

    [17]

    Kennedy R E, Popov S V, Taylor J R 2006 Opt. Lett. 31 167

    [18]

    Pan N, Huang P, Huang L G, Lei M, Liu W J 2015 Acta Phys. Sin. 64 090504 (in Chinese) [潘楠, 黄平, 黄龙刚, 雷鸣, 刘文军 2015 物理学报 64 090504]

    [19]

    Gu B, Yuan W, Frosz M H, Zhang A P, He S L, Bang O 2012 Opt. Lett. 37 794

    [20]

    Bendahmane A, Mussotm A, Kudlinski A, Szriftgiser P, Conforti M, Wabnitz S, Trillo S 2015 Opt. Express 23 30861

    [21]

    Richardson D J, Fini J M, Nelson L E 2013 Nature Photon. 7 354

    [22]

    Saitoh K, Matsuo S 2016 J. Lightwave Technol. 34 55

    [23]

    Radosavljevic A, Danicic A, Petrovic J, Maluckov A, Haziewski L 2015 JOSA B 32 2520

    [24]

    Sillard P, Molin D, Bigot-Astruc M, Amezcua-Correa A, de Jongh K, Achten F 2016 J. Lightwave Technol. 34 1672

    [25]

    Wang L, Zhu Y J, Qi F H, Li M, Guo R 2015 Chaos 25 063111

    [26]

    Zhang J H, Wang L, Liu C 2017 Proc. R. Soc. A 473 20160681

    [27]

    Wang L, Zhang J H, Liu C, Li M, Qi F H 2016 Phys. Rev. E 93 062217

    [28]

    Cai L Y, Wang X, Wang L, Li M, Liu Y, Shi Y Y 2017 Nonlinear Dyn. 90 2221

    [29]

    Wang L, Jiang D Y, Qi F H, Shi Y Y, Zhao Y C 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 502

    [30]

    Wang L, Wang Z Q, Sun W R, Shi Y Y, Li M, Xu M 2017 Commun. Nonlinear Sci. Numer. Simulat. 47 190

    [31]

    Ding W S, Xi L, Liu L H 2008 Acta Phys. Sin. 57 7705 (in Chinese) [丁万山, 席崚, 柳莲花 2008 物理学报 57 7705]

    [32]

    Trillo S, Wabnitz S, Stegeman G I, Wright E M 1989 JOSA B 6 889

    [33]

    Tasgal R S, Malomed B A 1999 Phys. Scr. 60 418

    [34]

    Xiang Y J, Wen S C, Dai X Y, Fan D Y 2010 Phys. Rev. E 82 056605

    [35]

    Li J H, Chiang K S, Chow K W 2011 JOSA B 28 1693

    [36]

    Li J H, Chiang K S, Malomed B A, Chow K W 2012 J. Phys. B 45 165404

    [37]

    Ding W, Staines O K, Hobbs G D, Gorbach A V, de Nobriga C, Wadsworth W J, Knight J C, Skryabin D V, Strain M J, Sorel M 2012 Opt. Lett. 37 668

    [38]

    Tatsing P H, Mohamadou A, Bouri C, Tiofack G L, Kofane T C 2012 JOSA B 29 3218

    [39]

    Nithyanandan K, Raja R V J, Porsezian K 2013 Phys. Rev. A 87 043805

    [40]

    Zhang J G, Dai X Y, Zhang L F, Xiang Y J, Li Y F 2015 JOSA B 32 1

    [41]

    Ali A K S, Porsezian K, Uthayakumar T 2014 Phys. Rev. E 90 042910

    [42]

    Mohamadou A, Tatsing P H, Tiofack L C G, Tabi C B, Kofane T C 2014 J. Mod. Opt. 61 1670

    [43]

    Li J H, Zhou H, Chiang K S, Xiao S R 2016 JOSA B 33 2357

  • [1] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [2] 郑州, 李金花, 马佑桥, 任海东. 扰动振幅和扰动频率对Fermi-Pasta-Ulam-Tsingou回归现象的影响. 物理学报, 2022, 71(18): 185201. doi: 10.7498/aps.71.20220945
    [3] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [4] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应. 物理学报, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [5] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [6] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [7] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性. 物理学报, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [8] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [9] 贾维国, 周严勇, 韩永明, 包红梅, 扬盛际. 光子晶体光纤耦合器中的标量调制不稳定性. 物理学报, 2009, 58(9): 6323-6329. doi: 10.7498/aps.58.6323
    [10] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [11] 戴小玉, 文双春, 项元江. 色散磁导率对异向介质中的调制不稳定性的影响. 物理学报, 2008, 57(1): 186-193. doi: 10.7498/aps.57.186
    [12] 丁万山, 席 崚, 柳莲花. 基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究. 物理学报, 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [13] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [14] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性. 物理学报, 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [15] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 保偏光纤中相近频率传输区域的调制不稳定性. 物理学报, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [16] 吴 昆, 吴 健, 徐 晗, 曾和平. 超短激光脉冲调制上转换放大. 物理学报, 2005, 54(8): 3749-3756. doi: 10.7498/aps.54.3749
    [17] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [18] 李文飞, 张丰收. 非对称核物质的化学不稳定性与力学不稳定性. 物理学报, 2001, 50(10): 1888-1895. doi: 10.7498/aps.50.1888
    [19] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅰ)——向正能模式的转变和双稳态. 物理学报, 1993, 42(7): 1035-1041. doi: 10.7498/aps.42.1035
    [20] 赵阳, 杨祥林. 非线性单模光纤中的调制不稳定性. 物理学报, 1989, 38(4): 541-547. doi: 10.7498/aps.38.541
计量
  • 文章访问数:  4681
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-18
  • 修回日期:  2017-11-25
  • 刊出日期:  2018-03-05

/

返回文章
返回