搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于功率谱的神经元放电早期预警信号

李松蔚 谢勇

引用本文:
Citation:

基于功率谱的神经元放电早期预警信号

李松蔚, 谢勇
cstr: 32037.14.aps.74.20241471

Power spectrum based early warning signal of neuronal firing

LI Songwei, XIE yong
cstr: 32037.14.aps.74.20241471
PDF
HTML
导出引用
  • 在神经系统中, 脑疾病的发生往往对应着神经系统的临界转迁与神经元的异常放电, 因此对临界转迁的早期预警信号(EWS)的研究有助于预测神经元的放电行为, 从而预防脑疾病的发生. 传统EWS, 如自相关系数、方差等指标, 虽然能对动力系统的分岔点进行早期预警, 但其无法对分岔类型进行区分. 而基于功率谱的EWS可以有效预测分岔点并区分分岔类型, 且在气候及生态模型上的预测效果良好. 本文将基于功率谱的EWS应用在神经元系统中, 先后考察了Morris-Lecar和Hindmarsh-Rose模型神经元放电所对应的4种余维一分岔点前的临界现象, 分别计算了传统EWS和基于功率谱的EWS, 并进行对比分析. 结果表明基于功率谱的EWS能有效预测神经元放电, 并且能对不同神经元的I型兴奋和II型兴奋作出区分. 本研究对神经系统的临界转迁的预测有着重要的指导意义, 对神经系统疾病的诊断和治疗有着重要的启示作用.
    Brain diseases often occur simultaneously with critical changes in neural system and abnormal neuronal firing. Studying the early warning signals (EWSs) of critical changes can provide a promising approach for predicting neuronal firing behaviors, which is conducible to the early diagnosis and prevention of brain diseases. Traditional EWSs, such as autocorrelation and variance, have been widely used to detect the critical transitions in various dynamical systems. However, these methods have limitations in distinguishing different types of bifurcations. In contrast, the EWSs with power spectrum have shown a significant advantage in not only predicting bifurcation points but also distinguishing the types of bifurcations involved. Previous studies have demonstrated its predictive capability in climate and ecological models. Based on this, this study applies the EWS with power spectrum to neuronal systems in order to predict the neuronal firing behaviors and distinguish different classes of neuronal excitability. Specifically, we compute the EWSs before the occurrence of saddle-node bifurcation on the invariant circle and subcritical Hopf bifurcation in the Morris-Lecar neuron model. Additionally, we extend the analysis to the Hindmarsh-Rose model, calculating the EWSs before both saddle-node bifurcation and supercritical Hopf bifurcation. This study contains the four types of codimension-1 bifurcations corresponding to the neuronal firing. For comparison, we also calculate two types of conventional EWSs: lag-1 autocorrelation and variance. In numerical simulations, the stochastic differential equations are simulated by the Euler-Maruyama method. Then, the simulated responses are detrended by the Lowess filter. Finally, the EWSs are calculated by using the rolling window method to ensure the detection of EWS before bifurcation points. Our results show that the EWS with power spectrum can effectively predict the bifurcation points, which means that it can predict neuronal firing activities. Compared with the lag-1 autocorrelation and the variance, the EWSs with power spectrum not only accurately predict the neuronal firing, but also distinguish the classes of excitability in neurons. That is, according to the different characteristics of the power spectrum frequencies, the EWS with power spectrum can effectively distinguish between saddle-node bifurcations and Hopf bifurcations during neuronal firing. This work provides a novel approach for predicting the critical transitions in neural system, with potential applications in diagnosing and treating brain diseases.
      通信作者: 谢勇, yxie@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12172269)资助的课题.
      Corresponding author: XIE yong, yxie@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12172269).
    [1]

    Grziwotz F, Chang C W, Dakos V, et al. 2023 Sci. Adv. 9 eabq4558Google Scholar

    [2]

    Strogatz S H 2018 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Boca Raton: CRC Press) pp70–80

    [3]

    Maturana M I, Meisel C, Dell K, et al. 2020 Nat. Commun. 11 2172Google Scholar

    [4]

    Dakos V, Carpenter S R, Brock W A, et al. 2012 PLoS One 7 e41010Google Scholar

    [5]

    Carpenter S R, Brock W A 2006 Ecol. Lett. 9 311Google Scholar

    [6]

    Held H, Kleinen T 2004 Geophys. Res. Lett. 31 L23207Google Scholar

    [7]

    Boettiger C, Hastings A 2012 J. R. Soc. Interface. 9 2527Google Scholar

    [8]

    Scheffer M, Bascompte J, Brock W A, et al. 2009 Nature 461 53Google Scholar

    [9]

    Lade S J, Gross T 2012 PLoS Comput. Biol. 8 e1002360Google Scholar

    [10]

    Carpenter S R, Brock W A 2011 Ecology 92 2196Google Scholar

    [11]

    Bauch C T, Sigdel R, Pharaon J, Anand M 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14560Google Scholar

    [12]

    颜鹏程, 侯威, 胡经国 2012 物理学报 61 139202Google Scholar

    Yan P C, Hou W, Hu J G 2012 Acta Phys. Sin. 61 139202Google Scholar

    [13]

    吴浩, 封国林, 侯威, 颜鹏程 2013 物理学报 62 059202Google Scholar

    Wu H, Feng G L, Hou W, Yan P C 2013 Acta Phys. Sin. 62 059202Google Scholar

    [14]

    吴浩, 侯威, 颜鹏程, 封国林 2012 物理学报 61 209202Google Scholar

    Wu H, Hou W, Yan P C, Feng G L 2012 Acta Phys. Sin. 61 209202Google Scholar

    [15]

    Boers N 2018 Nat. Commun. 9 2556Google Scholar

    [16]

    Meisel C, Klaus A, Kuehn C, Plenz D 2015 PLoS Comput. Biol. 11 e1004097Google Scholar

    [17]

    Dakos V, Van Nes E H, D’Odorico P, Scheffer M 2012 Ecology 93 264Google Scholar

    [18]

    Kuznetsov Y A 2023 Elements of Applied Bifurcation Theory (Cham: Springer International Publishing) pp77–102

    [19]

    Bury T M, Bauch C T, Anand M 2020 J. R. Soc. Interface 17 20200482Google Scholar

    [20]

    Chen Z, Fan P Y, Hou X T, Feng G L, Qian Z H 2024 Chaos Soliton. Fract. 187 115409Google Scholar

    [21]

    Gardiner C W 1985 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Berlin: Springer) pp106–107

    [22]

    Box G E, Jenkins G M, Reinsel G C, Ljung G M 2015 Time Series Analysis: Forecasting and Control (Hoboken: John Wiley & Sons) pp21–47

    [23]

    Welch P 1967 IEEE Trans. Audio Electroacoustics 15 70Google Scholar

    [24]

    Prescott S A, De Koninck Y, Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198Google Scholar

    [25]

    Liu C M, Liu X L, Liu S Q 2014 Biol. Cybern. 108 75Google Scholar

    [26]

    Kendall M G 1938 Biometrika 30 81Google Scholar

    [27]

    Lü M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479Google Scholar

  • 图 1  折叠分岔中自相关和功率谱的近似解析解 (a) 特征值趋近于0; (b) 不同特征值下, 自相关函数随时滞$\tau $的变化; (c) 不同特征值下功率谱的变化

    Fig. 1.  Approximate analytic solutions for autocorrelation and power spectra in fold bifurcation: (a) The eigenvalue approaching to zero; (b) autocorrelation versus lag $\tau $ under different eigenvalues; (c) variation of power spectrum under different eigenvalues.

    图 2  Hopf分岔中自相关和功率谱的近似解析解 (a) 特征值趋近于0; (b) 不同特征值下, 自相关函数随时滞$\tau $的变化; (c) 不同特征值下功率谱的变化

    Fig. 2.  Approximate analytic solutions for autocorrelation and power spectra in Hopf bifurcation: (a) Real part of eigenvalues approaching to zero; (b) autocorrelation versus lag $\tau $ under different eigenvalues; (c) variation of power spectrum under different eigenvalues.

    图 3  ML模型膜电位对外加电流的分岔图(SNIC)

    Fig. 3.  Bifurcation diagram of membrane potential versus externally applied current in ML model (SNIC).

    图 4  ML模型SNIC分岔前膜电位对增加的电流刺激的模拟响应

    Fig. 4.  Simulated response of membrane potential versus increasing externally applied current on ML model before SNIC bifurcation.

    图 5  ML模型SNIC分岔前的残差数据

    Fig. 5.  Residual of ML model before SNIC bifurcation.

    图 6  SNIC分岔的3种EWS随外加电流$I$的变化 (a) 时滞$\tau = 1$自相关系数随$I$变化; (b)方差随$I$变化; (c) ${S_{\max }}$随$I$变化

    Fig. 6.  Three EWS’s on SNIC bifurcation versus externally applied current $I$: (a) Lag $\tau = 1$ autocorrelation versus $I$; (b) variance versus $I$; (c) ${S_{\max }}$ versus $I$.

    图 7  ML模型SNIC分岔的功率谱 (a)不同外加电流$I$下的功率谱; (b) 功率谱等高线图

    Fig. 7.  Power spectrum of the ML model before the SNIC bifurcation: (a) Power spectrum under different externally applied current $I$; (b) contour map of power spectrum.

    图 8  ML模型膜电位对外加电流的分岔图(超临界Hopf)

    Fig. 8.  Bifurcation diagram of membrane potential versus externally applied current in ML model (supercritical Hopf).

    图 9  ML模型超临界Hopf分岔前膜电位对增大的电流刺激的模拟响应 (a) 原始序列; (b) 残差序列

    Fig. 9.  Simulated response of membrane potential versus increasing externally applied current on ML model before supercritical Hopf bifurcation: (a) Original series; (b) residual series.

    图 10  超临界Hopf分岔的3种EWS随外加电流$I$的变化 (a) 时滞$\tau = 1$自相关系数; (b)方差; (c) ${S_{\max }}$

    Fig. 10.  Three EWS’s on supercritical hopf bifurcation versus externally applied current $I$: (a) Lag $\tau = 1$ autocorrelation; (b) variance; (c) ${S_{\max }}$.

    图 11  ML模型超临界Hopf分岔的功率谱 (a)不同外加电流$I$下的功率谱; (b) 功率谱等高线图

    Fig. 11.  Power spectrum of the ML model before the supercritical Hopf bifurcation: (a) Power spectrum under different externally applied current $I$; (b) contour map of power spectrum.

    图 12  HR模型膜电位对外加电流的分岔图(鞍结分岔)

    Fig. 12.  Bifurcation diagram of membrane potential versus externally applied current in HR model (saddle-node).

    图 13  HR模型鞍结分岔前膜电位对增加的电流刺激的模拟响应 (a) 原始序列; (b) 残差序列

    Fig. 13.  Simulated response of membrane potential versus increasing externally applied current on HR model before saddle-node bifurcation: (a) Original series; (b) residual series.

    图 14  鞍结分岔的三种EWS随外加电流$I$的变化 (a) 时滞$\tau = 1$自相关系数; (b)方差; (c) ${S_{\max }}$

    Fig. 14.  Three EWS’s on saddle-node bifurcation versus externally applied current $I$: (a) Lag $\tau = 1$ autocorrelation; (b) variance; (c) ${S_{\max }}$.

    图 15  HR模型鞍结分岔的功率谱 (a)不同外加电流$I$下的功率谱; (b) 功率谱等高线图

    Fig. 15.  Power spectrum of the HR model before the saddle-node bifurcation: (a) Power spectrum under different externally applied current $I$; (b) contour map of power spectrum.

    图 16  HR模型膜电位对外加电流的分岔图(亚临界Hopf)

    Fig. 16.  Bifurcation diagram of membrane potential versus externally applied current in HR model (subcritical Hopf).

    图 17  HR模型亚临界Hopf分岔前膜电位对增加的电流刺激的模拟响应 (a) 原始序列; (b) 残差序列

    Fig. 17.  Simulated response of membrane potential versus increasing externally applied current on HR model before subcritical Hopf bifurcation: (a) Original series; (b) residual series.

    图 18  亚临界Hopf分岔的3种EWS随外加电流$I$的变化 (a) 时滞$\tau = 1$自相关系数; (b)方差; (c) ${S_{\max }}$

    Fig. 18.  Three EWS’s on subcritical Hopf bifurcation versus externally applied current $I$: (a) Lag $\tau = 1$ autocorrelation; (b) variance; (c) ${S_{\max }}$.

    图 19  HR模型亚临界Hopf分岔的功率谱 (a)不同外加电流$I$下的功率谱; (b) 功率谱等高线图

    Fig. 19.  Power spectrum of the HR model before the subcritical Hopf bifurcation: (a) Power spectrum under different externally applied current $I$; (b) contour map of power spectrum.

  • [1]

    Grziwotz F, Chang C W, Dakos V, et al. 2023 Sci. Adv. 9 eabq4558Google Scholar

    [2]

    Strogatz S H 2018 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Boca Raton: CRC Press) pp70–80

    [3]

    Maturana M I, Meisel C, Dell K, et al. 2020 Nat. Commun. 11 2172Google Scholar

    [4]

    Dakos V, Carpenter S R, Brock W A, et al. 2012 PLoS One 7 e41010Google Scholar

    [5]

    Carpenter S R, Brock W A 2006 Ecol. Lett. 9 311Google Scholar

    [6]

    Held H, Kleinen T 2004 Geophys. Res. Lett. 31 L23207Google Scholar

    [7]

    Boettiger C, Hastings A 2012 J. R. Soc. Interface. 9 2527Google Scholar

    [8]

    Scheffer M, Bascompte J, Brock W A, et al. 2009 Nature 461 53Google Scholar

    [9]

    Lade S J, Gross T 2012 PLoS Comput. Biol. 8 e1002360Google Scholar

    [10]

    Carpenter S R, Brock W A 2011 Ecology 92 2196Google Scholar

    [11]

    Bauch C T, Sigdel R, Pharaon J, Anand M 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14560Google Scholar

    [12]

    颜鹏程, 侯威, 胡经国 2012 物理学报 61 139202Google Scholar

    Yan P C, Hou W, Hu J G 2012 Acta Phys. Sin. 61 139202Google Scholar

    [13]

    吴浩, 封国林, 侯威, 颜鹏程 2013 物理学报 62 059202Google Scholar

    Wu H, Feng G L, Hou W, Yan P C 2013 Acta Phys. Sin. 62 059202Google Scholar

    [14]

    吴浩, 侯威, 颜鹏程, 封国林 2012 物理学报 61 209202Google Scholar

    Wu H, Hou W, Yan P C, Feng G L 2012 Acta Phys. Sin. 61 209202Google Scholar

    [15]

    Boers N 2018 Nat. Commun. 9 2556Google Scholar

    [16]

    Meisel C, Klaus A, Kuehn C, Plenz D 2015 PLoS Comput. Biol. 11 e1004097Google Scholar

    [17]

    Dakos V, Van Nes E H, D’Odorico P, Scheffer M 2012 Ecology 93 264Google Scholar

    [18]

    Kuznetsov Y A 2023 Elements of Applied Bifurcation Theory (Cham: Springer International Publishing) pp77–102

    [19]

    Bury T M, Bauch C T, Anand M 2020 J. R. Soc. Interface 17 20200482Google Scholar

    [20]

    Chen Z, Fan P Y, Hou X T, Feng G L, Qian Z H 2024 Chaos Soliton. Fract. 187 115409Google Scholar

    [21]

    Gardiner C W 1985 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Berlin: Springer) pp106–107

    [22]

    Box G E, Jenkins G M, Reinsel G C, Ljung G M 2015 Time Series Analysis: Forecasting and Control (Hoboken: John Wiley & Sons) pp21–47

    [23]

    Welch P 1967 IEEE Trans. Audio Electroacoustics 15 70Google Scholar

    [24]

    Prescott S A, De Koninck Y, Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198Google Scholar

    [25]

    Liu C M, Liu X L, Liu S Q 2014 Biol. Cybern. 108 75Google Scholar

    [26]

    Kendall M G 1938 Biometrika 30 81Google Scholar

    [27]

    Lü M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479Google Scholar

  • [1] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变. 物理学报, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [2] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [3] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报, 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [4] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [5] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [6] 李翔, 刘锋, 帅建伟. 癌细胞信号网络动力学研究. 物理学报, 2016, 65(17): 178704. doi: 10.7498/aps.65.178704
    [7] 李佳佳, 吴莹, 独盟盟, 刘伟明. 电磁辐射诱发神经元放电节律转迁的动力学行为研究. 物理学报, 2015, 64(3): 030503. doi: 10.7498/aps.64.030503
    [8] 王凯明, 钟宁, 周海燕. 基于改进功率谱熵的抑郁症脑电信号活跃性研究. 物理学报, 2014, 63(17): 178701. doi: 10.7498/aps.63.178701
    [9] 刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱. 颠倒睡眠状态调制心率变异性信号的功率谱和基本尺度熵分析. 物理学报, 2014, 63(19): 198703. doi: 10.7498/aps.63.198703
    [10] 颜鹏程, 侯威, 胡经国. 基于Logistic模型的均值突变时间序列临界预警研究. 物理学报, 2012, 61(18): 189202. doi: 10.7498/aps.61.189202
    [11] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [12] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [13] 李锦, 刘大钊. 昼夜节律下心率变异性信号的熵信息和谱特征. 物理学报, 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [14] 张良英, 金国祥, 曹力. 具有频率噪声的单模激光线性模型随机共振. 物理学报, 2011, 60(4): 044207. doi: 10.7498/aps.60.044207
    [15] 黄俊, 孙顺凯, 肖德龙, 丁宁, 宁成, 张扬, 薛创. 丝阵Z箍缩早期消融等离子体动力学的二维数值模拟研究. 物理学报, 2010, 59(9): 6351-6361. doi: 10.7498/aps.59.6351
    [16] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [17] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [18] 宋艳丽. 简谐速度噪声及其与势场之间的频率共振. 物理学报, 2006, 55(12): 6482-6487. doi: 10.7498/aps.55.6482
    [19] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析. 物理学报, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  281
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2024-11-11
  • 上网日期:  2024-11-25

/

返回文章
返回