-
神经网络具有强大的建模能力和对大规模数据的适应性, 在拟合核质量模型参数方面表现出显著效果. 本研究旨在探索神经网络拟合核质量模型参数的问题: 采用多层感知机神经网络结构, 评估不同参数下Adam优化器的训练效果, 训练出准确的模型参数. 研究发现, 基于AME2020数据, 更新系数后的BW2核质量模型在双幻数以及重核区域的均方根误差降低明显; BW3模型重新拟合后的全局均方根误差为1.63MeV, 较之前1.86MeV有所降低. 结果表明, 该方法能够有效地拟合模型参数, 并具有良好的拟合性能和泛化能力. 这项研究为BW系列核质量模型的系数提供了新的拟合方法, 也为其他核质量寻求最佳拟合参数提供了有益的参考.
The nuclear mass model has significant applications in nuclear physics, astrophysics, and nuclear engineering. The accurately predictions of binding energy are crucial for research on nuclear structure, reactions, and decay. However, traditional mass models exhibit large errors in double magic number regions and heavy nuclei regions. These models struggle to effectively describe shell effects and parity effects in nuclear structures, and also fail to capture the subtle differences observed in experimental results. This study shows the strong modeling capabilities of MLP neural networks, which optimizes the parameters of the nuclear mass model, and reduces prediction errors in key regions and globally. The neural network takes the features as neutron number, proton number, and binding energy, and the labels as mass-model coefficients. The training set is the multiple sets of calculated nuclear mass model coefficients. Through extensive experimentation, the optimal parameters are determined to ensure model convergence speed and stability. The Adam optimizer is employed to adjust the weights and biases of the network, for reducing the mean squared error loss during training. The trained neural network model with minimal loss was used to predict the optimal coefficients of the nuclear mass model based on the AME2020 dataset. The optimized BW2 model significantly reduces root-mean-square errors in double magic number and heavy nuclei regions. Specifically, the optimized model achieved reductions of approximately 28%, 12%, and 18% in root-mean-square errors near Z(N) = 50, Z(N) = 50 (82), and Z(N) = 82 (126), respectively. In heavy nuclei regions, the errors were reduced by 48%. The BW3 model, incorporating higher-order symmetry energy terms, reduced global root-mean-square errors from 1.86 MeV to 1.63 MeV after parameter optimization using the neural network. This work reveals that the model with newly optimized coefficients not only exhibits significant error reductions near double magic numbers but also shows improvements in binding energy predictions for both neutron-rich and neutron-deficient nuclei. Furthermore, the model demonstrates good improvements in describing parity effects, accurately capturing parity-related differences in isotopic chains with varying proton numbers. This study demonstrates the tremendous potential of MLP neural networks in optimizing nuclear mass model parameters and provides a novel method for optimizing parameters in more complex nuclear mass models. Moreover, the proposed method applies to nuclear mass models with implicit or nonlinear relationships, offering new perspectives for further development of nuclear mass models. -
Keywords:
- Nuclear mass model /
- Magic numbers /
- Multilayer Perceptron neural network /
- Adam optimizer
-
图 2 Adam优化器不同学习率和权重衰减参数实验对比图, 水平坐标为神经网络训练次数, 垂直坐标为神经网络损失值, 当损失值下降低于0.1%时停止训练($ lr $表示学习率, $ w $表示权重衰减参数)
Fig. 2. Comparison chart of Adam optimizer with different learning rates and weight decay parameters. The horizontal axis represents the number of neural network training iterations, and the vertical axis represents the neural network loss value. Training stops when the loss value drops below 0.1%. ($ lr $ represents the learning rate, $ w $ represents the weight decay parameter.)
表 1 MLP神经网络寻找的系数组(部分, 单位: MeV)
Table 1. Coefficients identified by the MLP neural network (partial, unit: MeV).
1 2 3 4 5 6 7 8 $ \alpha_{v} $ 16.58 16.22 16.24 16.21 16.22 16.22 16.24 16.05 $ \alpha_{s} $ –26.95 –23.36 –23.42 –23.39 –23.38 –23.36 –23.40 –23.10 $ \alpha_{C} $ –0.77 –0.74 0.74 –0.74 –0.74 –0.75 –0.75 –0.74 $ \alpha_{t} $ –31.51 –31.53 –31.59 –31.54 –31.57 –31.53 –32.60 –31.62 $ \alpha_{xC} $ 2.22 1.39 1.38 1.39 1.40 1.39 1.40 1.59 $ \alpha_{W} $ –43.40 –57.38 –57.40 –57.42 –57.41 –57.40 –57.47 –72.97 $ \alpha_{s t} $ 55.62 54.98 55.02 54.96 55.03 54.99 55.09 64.10 $ \alpha_{p} $ 9.87 10.63 10.61 10.64 10.64 10.63 10.67 10.56 $ \alpha_{R} $ 14.77 9.89 9.94 9.91 9.91 9.89 9.93 9.89 $ \alpha_{m} $ –1.90 –1.89 –1.91 –1.90 –1.89 –1.89 –1.90 –1.88 $ \beta_{m} $ 0.14 0.14 0.13 0.14 0.14 0.15 0.15 0.14 $ b $ — — — — — — — –11.36 $ \sigma $ 1.92 1.90 1.84 1.68 1.76 1.81 1.89 1.63 -
[1] Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021Google Scholar
[2] 李涛, 黎春青, 周厚兵, 王宁 2021 物理学报 70 102101Google Scholar
Li T, Li C q, Zhou H B, Wang N 2021 Acta Phys. Sin. 70 102101Google Scholar
[3] Ramirez E M, Ackermann D, Blaum K, Block M, Droese C, Düllmann C E, Dworschak M, Eibach M, Eliseev S, Haettner E, Herfurth F, Heßberger F P, Hofmann S, Ketelaer J, Marx G, Mazzocco M, Nesterenko D, Novikov Y N, Plaß W R, Rodríguez D, Scheidenberger C, Schweikhard L, Thirolf P G, Weber C 2012 Science 337 1207Google Scholar
[4] Horoi M 2013 International Summer School for Advanced Studies Dynamics of Open Nuclear Systems (Predeal12) Predeal, Romania, July 9-20, 2012 p012020
[5] Wienholtz F, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, George S, Herfurth F, Holt J D, Kowalska M, Kreim S, Lunney D, Manea V, Menéndez J, Neidherr D, Rosenbusch M, Schweikhard L, Schwenk A, Simonis J, Stanja J, Wolf R N, Zuber K 2013 Nature 498 346Google Scholar
[6] Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar
[7] Ye W, Qian Y, Ren Z 2022 Phys. Rev. C 106 024318Google Scholar
[8] Bethe H A, Bacher R F 1936 Rev. Mod. Phys. 8 82Google Scholar
[9] Weizsäcker C F v 1935 Zeitschrift für Physik 96 431
[10] Kirson M W 2008 Nucl. Phys. A 798 29Google Scholar
[11] Sorlin O, Porquet M G 2008 Prog. Part. Nucl. Phys. 61 602Google Scholar
[12] Ozawa A, Kobayashi T, Suzuki T, Yoshida K, Tanihata I 2000 Phys. Rev. Lett. 84 5493Google Scholar
[13] Gherghescu R A, Poenaru D N 2022 Phys. Rev. C 106 034616Google Scholar
[14] Björck Å 1990 Handb. Numer. Anal. 1 465
[15] Jiang B N 1998 Comput. Methods Appl. Mech. Eng. 152 239Google Scholar
[16] Mohammed-Azizi B, Mouloudj H 2022 Int. J. Mod. Phys. C 33 2250076Google Scholar
[17] Cao Y, Lu D, Qian Y, Ren Z 2022 Phys. Rev. C 105 034304Google Scholar
[18] Huang W, Wang M, Kondev F, Audi G, Naimi S 2021 Chin. Phys. C 45 030002Google Scholar
[19] Wang M, Huang W, Kondev F, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar
[20] Sobiczewski A, Pomorski K 2007 Prog. Part. Nucl. Phys. 58 292Google Scholar
[21] Yin X, Shou R, Zhao Y M 2022 Phys. Rev. C 105 064304
[22] Wang N, Liu M, Wu X 2010 Phys. Rev. C 81 044322Google Scholar
[23] Wu Y c, Feng J w 2018 Wirel. Pers. Commun. 102 1645Google Scholar
[24] Popescu M C, Balas V E, Perescu-Popescu L, Mastorakis N 2009 WSEAS Trans. Cir. and Sys. 8 579
[25] Xiang C, Ding S, Lee T H 2005 IEEE Trans. Neural Netw. 16 84Google Scholar
[26] Pinkus A 1999 Acta Numerica 8 143Google Scholar
[27] Sharma A, Gandhi A, Kumar A 2022 Phys. Rev. C 105 L031306Google Scholar
[28] Wu X H, Ren Z X, Zhao P W 2022 Phys. Rev. C 105 L031303Google Scholar
[29] Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109Google Scholar
[30] 庞龙刚, 周凯, 王新年 2020 原子核物理评论 37 720Google Scholar
Pang L G, Zhou K, Wang X N 2020 Nucl. Phys. Rev. 37 720Google Scholar
[31] Gernoth K A, Clark J W 1995 Neural Networks 8 291Google Scholar
[32] Yüksel E, Soydaner D, Bahtiyar H 2021 Int. J. Mod. Phys. E 30 2150017
[33] Liu M, Wang N, Deng Y, Wu X 2011 Phys. Rev. C 84 014333Google Scholar
[34] Wang N, Liu M 2011 Phys. Rev. C 84 051303Google Scholar
[35] Utama R, Piekarewicz J, Prosper H B 2016 Phys. Rev. C 93 014311Google Scholar
[36] Utama R, Piekarewicz J 2018 Phys. Rev. C 97 014306
[37] Ma C, Zong Y Y, Zhao Y M, Arima A 2020 Phys. Rev. C 102 024330Google Scholar
[38] Özdoğan H, Üncü Y, Şekerci M, Kaplan A 2022 Appl. Radiat. Isot. 184 110162
Özdoğan H, Üncü Y, Şekerci M, Kaplan A 2022 Appl. Radiat. Isot. 184 110162
[39] Chen X, Ma Q, Alkharobi T 2009 2 nd IEEE International Conference on Computer Science and Information Technology Beijing, China, August 8-11, 2009 p291
[40] Ming X C, Zhang H F, Xu R R, Sun X D, Tian Y, Ge Z G 2022 Nucl. Sci. Tech. 33 48Google Scholar
[41] Le X K, Wang N, Jiang X 2023 Nucl. Phys. A 1038 122707Google Scholar
[42] Slowik A, Kwasnicka H 2020 Neural Comput. Appl. 32 12363Google Scholar
[43] Amine K 2019 Adv. Oper. Res. 2019 8134674
[44] Wang D, Tan D, Liu L 2018 Soft computing 22 387Google Scholar
[45] Chen A, Tan H, Zhu Y 2022 2 nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2022) Kunming, China, March 25-27, 2022 p1472
[46] Huang L, Qin J, Zhou Y, Zhu F, Liu L, Shao L 2023 IEEE Trans. Pattern Anal. Mach. Intell. 45 10173Google Scholar
[47] Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91Google Scholar
[48] Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501Google Scholar
[49] Zhang H F, Wang L H, Yin J P, Chen P H, Zhang H F 2017 J. Phys. G: Nucl. Part. Phys. 44 045110Google Scholar
[50] Samyn M, Goriely S, Heenen P H, Pearson J, Tondeur F 2002 Nucl. Phys. A 700 142Google Scholar
[51] Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59 185Google Scholar
[52] Duflo J, Zuker A 1995 Phys. Rev. C 52 R23Google Scholar
计量
- 文章访问数: 106
- PDF下载量: 2
- 被引次数: 0