搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MLP神经网络优化改进的BW模型

陈存宇 陈爱喜 戚晓秋 王韩奎

引用本文:
Citation:

基于MLP神经网络优化改进的BW模型

陈存宇, 陈爱喜, 戚晓秋, 王韩奎

The improved BW model are optimized based on MLP neural network

Chen Cun-Yu, Chen Ai-Xi, Qi Xiao-Qiu, Wang Han-Kui
PDF
HTML
导出引用
  • 神经网络具有强大的建模能力和对大规模数据的适应性, 在拟合核质量模型参数方面表现出显著效果. 本研究旨在探索神经网络拟合核质量模型参数的问题: 采用多层感知机神经网络结构, 评估不同参数下Adam优化器的训练效果, 训练出准确的模型参数. 研究发现, 基于AME2020数据, 更新系数后的BW2核质量模型在双幻数以及重核区域的均方根误差降低明显; BW3模型重新拟合后的全局均方根误差为1.63MeV, 较之前1.86MeV有所降低. 结果表明, 该方法能够有效地拟合模型参数, 并具有良好的拟合性能和泛化能力. 这项研究为BW系列核质量模型的系数提供了新的拟合方法, 也为其他核质量寻求最佳拟合参数提供了有益的参考.
    The nuclear mass model has significant applications in nuclear physics, astrophysics, and nuclear engineering. The accurately predictions of binding energy are crucial for research on nuclear structure, reactions, and decay. However, traditional mass models exhibit large errors in double magic number regions and heavy nuclei regions. These models struggle to effectively describe shell effects and parity effects in nuclear structures, and also fail to capture the subtle differences observed in experimental results.This study shows the strong modeling capabilities of MLP neural networks, which optimizes the parameters of the nuclear mass model, and reduces prediction errors in key regions and globally. The neural network takes the features as neutron number, proton number, and binding energy, and the labels as mass-model coefficients. The training set is the multiple sets of calculated nuclear mass model coefficients. Through extensive experimentation, the optimal parameters are determined to ensure model convergence speed and stability. The Adam optimizer is employed to adjust the weights and biases of the network, for reducing the mean squared error loss during training.The trained neural network model with minimal loss was used to predict the optimal coefficients of the nuclear mass model based on the AME2020 dataset. The optimized BW2 model significantly reduces root-mean-square errors in double magic number and heavy nuclei regions. Specifically, the optimized model achieved reductions of approximately 28%, 12%, and 18% in root-mean-square errors near Z(N) = 50, Z(N) = 50 (82), and Z(N) = 82 (126), respectively. In heavy nuclei regions, the errors were reduced by 48%. The BW3 model, incorporating higher-order symmetry energy terms, reduced global root-mean-square errors from 1.86 MeV to 1.63 MeV after parameter optimization using the neural network.This work reveals that the model with newly optimized coefficients not only exhibits significant error reductions near double magic numbers but also shows improvements in binding energy predictions for both neutron-rich and neutron-deficient nuclei. Furthermore, the model demonstrates good improvements in describing parity effects, accurately capturing parity-related differences in isotopic chains with varying proton numbers.This study demonstrates the tremendous potential of MLP neural networks in optimizing nuclear mass model parameters and provides a novel method for optimizing parameters in more complex nuclear mass models. Moreover, the proposed method applies to nuclear mass models with implicit or nonlinear relationships, offering new perspectives for further development of nuclear mass models.
  • 图 1  神经网络优化核质量模型系数框架图(MLP: 多层感知机神经网络, Exp.: 实验结合能)

    Fig. 1.  Framework Diagram of Neural Network Optimizing Nuclear Mass Model Coefficients (MLP: Multi-Layer Perceptron Neural Network, Exp.: Experimental Binding Energy).

    图 2  Adam优化器不同学习率和权重衰减参数实验对比图, 水平坐标为神经网络训练次数, 垂直坐标为神经网络损失值, 当损失值下降低于0.1%时停止训练($ lr $表示学习率, $ w $表示权重衰减参数)

    Fig. 2.  Comparison chart of Adam optimizer with different learning rates and weight decay parameters. The horizontal axis represents the number of neural network training iterations, and the vertical axis represents the neural network loss value. Training stops when the loss value drops below 0.1%. ($ lr $ represents the learning rate, $ w $ represents the weight decay parameter.)

    图 3  初始系数(a)和优化系数(b)下BW2质量公式预测值与实验结合能的偏差对比图

    Fig. 3.  Comparison plot of the deviation of the predicted value of the BW2 mass formula from the experimental binding energy under the original coefficient (a) and optimization coefficient (b).

    图 4  随机元素结合能的实验值与质量公式初始系数和优化系数计算值之间的差值折线图

    Fig. 4.  Line plot of the difference between the experimental value of the binding energy of a random element and the calculated value of the original coefficient and optimization coefficient of the mass formula.

    图 5  相同质量数下对比不同中子数的结合能偏差图

    Fig. 5.  Graph of Same Mass Number vs. Different Neutron Numbers.

    图 6  中子数相同对比不同质子数的结合能偏差图

    Fig. 6.  Graph of Same Neutron Number vs. Different Proton Numbers.

    表 1  MLP神经网络寻找的系数组(部分, 单位: MeV)

    Table 1.  Coefficients identified by the MLP neural network (partial, unit: MeV).

    1 2 3 4 5 6 7 8
    $ \alpha_{v} $ 16.58 16.22 16.24 16.21 16.22 16.22 16.24 16.05
    $ \alpha_{s} $ –26.95 –23.36 –23.42 –23.39 –23.38 –23.36 –23.40 –23.10
    $ \alpha_{C} $ –0.77 –0.74 0.74 –0.74 –0.74 –0.75 –0.75 –0.74
    $ \alpha_{t} $ –31.51 –31.53 –31.59 –31.54 –31.57 –31.53 –32.60 –31.62
    $ \alpha_{xC} $ 2.22 1.39 1.38 1.39 1.40 1.39 1.40 1.59
    $ \alpha_{W} $ –43.40 –57.38 –57.40 –57.42 –57.41 –57.40 –57.47 –72.97
    $ \alpha_{s t} $ 55.62 54.98 55.02 54.96 55.03 54.99 55.09 64.10
    $ \alpha_{p} $ 9.87 10.63 10.61 10.64 10.64 10.63 10.67 10.56
    $ \alpha_{R} $ 14.77 9.89 9.94 9.91 9.91 9.89 9.93 9.89
    $ \alpha_{m} $ –1.90 –1.89 –1.91 –1.90 –1.89 –1.89 –1.90 –1.88
    $ \beta_{m} $ 0.14 0.14 0.13 0.14 0.14 0.15 0.15 0.14
    $ b $ –11.36
    $ \sigma $ 1.92 1.90 1.84 1.68 1.76 1.81 1.89 1.63
    下载: 导出CSV
  • [1]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021Google Scholar

    [2]

    李涛, 黎春青, 周厚兵, 王宁 2021 物理学报 70 102101Google Scholar

    Li T, Li C q, Zhou H B, Wang N 2021 Acta Phys. Sin. 70 102101Google Scholar

    [3]

    Ramirez E M, Ackermann D, Blaum K, Block M, Droese C, Düllmann C E, Dworschak M, Eibach M, Eliseev S, Haettner E, Herfurth F, Heßberger F P, Hofmann S, Ketelaer J, Marx G, Mazzocco M, Nesterenko D, Novikov Y N, Plaß W R, Rodríguez D, Scheidenberger C, Schweikhard L, Thirolf P G, Weber C 2012 Science 337 1207Google Scholar

    [4]

    Horoi M 2013 International Summer School for Advanced Studies Dynamics of Open Nuclear Systems (Predeal12) Predeal, Romania, July 9-20, 2012 p012020

    [5]

    Wienholtz F, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, George S, Herfurth F, Holt J D, Kowalska M, Kreim S, Lunney D, Manea V, Menéndez J, Neidherr D, Rosenbusch M, Schweikhard L, Schwenk A, Simonis J, Stanja J, Wolf R N, Zuber K 2013 Nature 498 346Google Scholar

    [6]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [7]

    Ye W, Qian Y, Ren Z 2022 Phys. Rev. C 106 024318Google Scholar

    [8]

    Bethe H A, Bacher R F 1936 Rev. Mod. Phys. 8 82Google Scholar

    [9]

    Weizsäcker C F v 1935 Zeitschrift für Physik 96 431

    [10]

    Kirson M W 2008 Nucl. Phys. A 798 29Google Scholar

    [11]

    Sorlin O, Porquet M G 2008 Prog. Part. Nucl. Phys. 61 602Google Scholar

    [12]

    Ozawa A, Kobayashi T, Suzuki T, Yoshida K, Tanihata I 2000 Phys. Rev. Lett. 84 5493Google Scholar

    [13]

    Gherghescu R A, Poenaru D N 2022 Phys. Rev. C 106 034616Google Scholar

    [14]

    Björck Å 1990 Handb. Numer. Anal. 1 465

    [15]

    Jiang B N 1998 Comput. Methods Appl. Mech. Eng. 152 239Google Scholar

    [16]

    Mohammed-Azizi B, Mouloudj H 2022 Int. J. Mod. Phys. C 33 2250076Google Scholar

    [17]

    Cao Y, Lu D, Qian Y, Ren Z 2022 Phys. Rev. C 105 034304Google Scholar

    [18]

    Huang W, Wang M, Kondev F, Audi G, Naimi S 2021 Chin. Phys. C 45 030002Google Scholar

    [19]

    Wang M, Huang W, Kondev F, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [20]

    Sobiczewski A, Pomorski K 2007 Prog. Part. Nucl. Phys. 58 292Google Scholar

    [21]

    Yin X, Shou R, Zhao Y M 2022 Phys. Rev. C 105 064304

    [22]

    Wang N, Liu M, Wu X 2010 Phys. Rev. C 81 044322Google Scholar

    [23]

    Wu Y c, Feng J w 2018 Wirel. Pers. Commun. 102 1645Google Scholar

    [24]

    Popescu M C, Balas V E, Perescu-Popescu L, Mastorakis N 2009 WSEAS Trans. Cir. and Sys. 8 579

    [25]

    Xiang C, Ding S, Lee T H 2005 IEEE Trans. Neural Netw. 16 84Google Scholar

    [26]

    Pinkus A 1999 Acta Numerica 8 143Google Scholar

    [27]

    Sharma A, Gandhi A, Kumar A 2022 Phys. Rev. C 105 L031306Google Scholar

    [28]

    Wu X H, Ren Z X, Zhao P W 2022 Phys. Rev. C 105 L031303Google Scholar

    [29]

    Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109Google Scholar

    [30]

    庞龙刚, 周凯, 王新年 2020 原子核物理评论 37 720Google Scholar

    Pang L G, Zhou K, Wang X N 2020 Nucl. Phys. Rev. 37 720Google Scholar

    [31]

    Gernoth K A, Clark J W 1995 Neural Networks 8 291Google Scholar

    [32]

    Yüksel E, Soydaner D, Bahtiyar H 2021 Int. J. Mod. Phys. E 30 2150017

    [33]

    Liu M, Wang N, Deng Y, Wu X 2011 Phys. Rev. C 84 014333Google Scholar

    [34]

    Wang N, Liu M 2011 Phys. Rev. C 84 051303Google Scholar

    [35]

    Utama R, Piekarewicz J, Prosper H B 2016 Phys. Rev. C 93 014311Google Scholar

    [36]

    Utama R, Piekarewicz J 2018 Phys. Rev. C 97 014306

    [37]

    Ma C, Zong Y Y, Zhao Y M, Arima A 2020 Phys. Rev. C 102 024330Google Scholar

    [38]

    Özdoğan H, Üncü Y, Şekerci M, Kaplan A 2022 Appl. Radiat. Isot. 184 110162

    Özdoğan H, Üncü Y, Şekerci M, Kaplan A 2022 Appl. Radiat. Isot. 184 110162

    [39]

    Chen X, Ma Q, Alkharobi T 2009 2 nd IEEE International Conference on Computer Science and Information Technology Beijing, China, August 8-11, 2009 p291

    [40]

    Ming X C, Zhang H F, Xu R R, Sun X D, Tian Y, Ge Z G 2022 Nucl. Sci. Tech. 33 48Google Scholar

    [41]

    Le X K, Wang N, Jiang X 2023 Nucl. Phys. A 1038 122707Google Scholar

    [42]

    Slowik A, Kwasnicka H 2020 Neural Comput. Appl. 32 12363Google Scholar

    [43]

    Amine K 2019 Adv. Oper. Res. 2019 8134674

    [44]

    Wang D, Tan D, Liu L 2018 Soft computing 22 387Google Scholar

    [45]

    Chen A, Tan H, Zhu Y 2022 2 nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2022) Kunming, China, March 25-27, 2022 p1472

    [46]

    Huang L, Qin J, Zhou Y, Zhu F, Liu L, Shao L 2023 IEEE Trans. Pattern Anal. Mach. Intell. 45 10173Google Scholar

    [47]

    Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91Google Scholar

    [48]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501Google Scholar

    [49]

    Zhang H F, Wang L H, Yin J P, Chen P H, Zhang H F 2017 J. Phys. G: Nucl. Part. Phys. 44 045110Google Scholar

    [50]

    Samyn M, Goriely S, Heenen P H, Pearson J, Tondeur F 2002 Nucl. Phys. A 700 142Google Scholar

    [51]

    Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [52]

    Duflo J, Zuker A 1995 Phys. Rev. C 52 R23Google Scholar

  • [1] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题. 物理学报, doi: 10.7498/aps.72.20222381
    [2] 武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋. 基于忆阻器的脉冲神经网络硬件加速器架构设计. 物理学报, doi: 10.7498/aps.71.20220098
    [3] 黄颖, 顾长贵, 杨会杰. 神经网络超参数优化的删除垃圾神经元策略. 物理学报, doi: 10.7498/aps.71.20220436
    [4] 娄月申, 郭文军. 贝叶斯深度神经网络对于核质量预测的研究. 物理学报, doi: 10.7498/aps.71.20212387
    [5] 魏连锁, 李华, 吴迪, 郭媛. 基于BP神经网络模型时钟同步误差补偿算法. 物理学报, doi: 10.7498/aps.70.20201641
    [6] 李涛, 黎春青, 周厚兵, 王宁. 原子核质量模型的检验. 物理学报, doi: 10.7498/aps.70.20201734
    [7] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, doi: 10.7498/aps.69.20191935
    [8] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜. 基于人工神经网络在线学习方法优化磁屏蔽特性参数. 物理学报, doi: 10.7498/aps.68.20190234
    [9] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, doi: 10.7498/aps.68.20190327
    [10] 郭业才, 周林锋. 基于脉冲耦合神经网络和图像熵的各向异性扩散模型研究. 物理学报, doi: 10.7498/aps.64.194204
    [11] 李瑞国, 张宏立, 范文慧, 王雅. 基于改进教学优化算法的Hermite正交基神经网络混沌时间序列预测. 物理学报, doi: 10.7498/aps.64.200506
    [12] 李承, 石丹, 邹云屏. 一种具有正弦基函数权值的反馈型神经网络模型. 物理学报, doi: 10.7498/aps.61.070701
    [13] 李盼池, 王海英, 戴庆, 肖红. 量子过程神经网络模型算法及应用. 物理学报, doi: 10.7498/aps.61.160303
    [14] 支启军. N=28丰中子核的形变和形状共存研究. 物理学报, doi: 10.7498/aps.60.052101
    [15] 丁斌刚, 张大立, 鲁定辉. 相对论平均场理论框架下对能的系统研究. 物理学报, doi: 10.7498/aps.58.6086
    [16] 郑鸿宇, 罗晓曙, 吴 雷. 变权小世界生物神经网络的兴奋及优化特性. 物理学报, doi: 10.7498/aps.57.3380
    [17] 圣宗强, 郭建友. 相对论平均场理论对Se,Kr,Sr和Zr同位素链形状共存的系统研究. 物理学报, doi: 10.7498/aps.57.1557
    [18] 丁斌刚, 鲁定辉, 张大立. 用相对论平均场理论研究近滴线区原子核传统幻数的消失和新幻数的产生. 物理学报, doi: 10.7498/aps.56.6905
    [19] 刘 丁, 任海鹏, 孔志强. 基于径向基函数神经网络的未知模型混沌系统控制. 物理学报, doi: 10.7498/aps.52.531
    [20] 马余强, 张玥明, 龚昌德. Hopfield神经网络模型的恢复特性. 物理学报, doi: 10.7498/aps.42.1356
计量
  • 文章访问数:  106
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-06

/

返回文章
返回