搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

癌细胞信号网络动力学研究

李翔 刘锋 帅建伟

引用本文:
Citation:

癌细胞信号网络动力学研究

李翔, 刘锋, 帅建伟

Dynamical studies of cellular signaling networks in cancers

Li Xiang, Liu Feng, Shuai Jian-Wei
PDF
导出引用
  • 癌症不仅是一种基因突变疾病,更是一种涉及诸如增殖、分化、凋亡和侵袭等多条细胞命运抉择的信号转导通路疾病. 癌细胞内的信号通路虽然非常复杂但我们可以专注于关键蛋白的信号网络建模,定量研究癌细胞核心信号通路的动力学和功能调控机理. 本文结合一些具体网络模型,介绍癌细胞信号网络动力学的研究进展. 首先介绍信号网络的基序动力学研究,然后讨论细胞存活、增殖、侵袭、凋亡等单个功能模块的网络建模,以及几个模块耦合的信号网络,和以癌细胞为整体的癌细胞信号网络建模. 这些研究表明,基于核心信号通路动力学的研究确实能促进对肿瘤发生发展机理的了解,为肿瘤的治疗和药物靶点的设计提供线索和思路,这些令人振奋的研究将激发未来更多类似的工作.
    Cancer, as a conundrum, is currently the biggest killer of human health. The major viewpoint of carcinogenesis is owing to somatic gene mutations. Based on such a viewpoint and the development of gene sequencing technology, extensive genomic alterations in cancer genomes have been identified. How to develop a better understanding of the link between gene mutations and carcinogenesis as well as efficient clinical cancer therapy is therefore a major challenge. Weinberg and Hanahan have suggested 10 hallmarks of cancer. The hallmarks are highly regulated by the corresponding signaling pathways. Thus, cancer itself is also a disease of dysfunction of signal transduction pathways related to multiple fundamental cell processes, including proliferation, differentiation, apoptosis, invasion and so on. Despite the signaling pathways are extremely complex in cancer cells, one can still focus on the signaling networks that govern the corresponding cell processes for modeling to discuss its dynamics and regulation functions quantitatively. Systems biology provides appropriate approach to integrate the experimental data (clinical data) and signaling pathway for a comprehensive analysis, resulting in a further prediction for optimal therapy and drug discovery. In this paper, we review the recent progress of dynamical modeling of signaling networks by using systems biology approaches that help to exploring the mechanisms of carcinogenesis. We first discuss the motif dynamics of the signaling networks. The presented generic circuit model can be decomposed into two loops and the circuit can achieve tristability through four kinds of bifurcation scenarios when parameter values are varied in a wide range. Then, we show the relative well-studied core signaling networks that regulate the cell survival, apoptosis, proliferation, invasion and energy metabolism processes. For each fundamental cell process, we individually review the dynamics of corresponding signaling network based on the systems biology approaches, including the NF-B signaling pathway that regulates the cell survival process, the Ras signaling pathway that governs the cell proliferation process, the EMT and mitochondrial signaling pathway that modulate the cell invasion and apoptosis processes. Furthermore, two coupled signaling networks, i.e., the p53 and TNF- signaling networks are discussed. Lastly, we review the breast cancer and gastric cancer signaling networks which contain several fundamental cell processes. The potential contribution for cancer treatment is also suggested. These dynamical modeling based on the core signaling networks can facilitate the understanding of the mechanisms of carcinogenesis and provide us the possible clues and ideas of the cancer treatment and drug design. We believe more exciting research works in this field will be stimulated in the near future.
      通信作者: 帅建伟, jianweishuai@xmu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB834104)、国家自然科学基金(批准号:31370830,11175084,31361163003)和福建省高校领军人才资助的课题.
      Corresponding author: Shuai Jian-Wei, jianweishuai@xmu.edu.cn
    • Funds: Project supported by 973 program (No. 2013CB834104), the National Natural Science Foundation of China (Grant Nos. 31370830, 11175084, 31361163003) and the Fujian Province Funds for Leading Scientist in Universities.
    [1]

    Torre L, Bray F, Siegle R L, Ferlay J, Lortet-Tieulent J, Jemal A 2012 CA Cancer J. Clin. 65 87

    [2]

    Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J 2015 CA Cancer J. Clin. 66 115

    [3]

    Hanahan D and Weinberg R A 2011 Cell 144 646

    [4]

    Hanahan D and Weinberg R A 2000 Cell 100 57

    [5]

    Futreal P A, Kasprzyk A, Birney E, Mullikin J C, Wooster R, Stratton M R 2001 Nature 409 850

    [6]

    Parsons D W, Jones S, Zhang X Lin J C, Leary R J, Angenendt P, Mankoo P, Carter H, Siu I M, Gallia G L, Olivi A, McLendon R, Rasheed B A, Keir S, Nikolskaya T, Nikolsky Y, Busam D A, Tekleab H, Diaz L A Jr, Hartigan J, Smith D R, Strausberg R L, Marie S K, Shinjo S M, Yan H, Riggins G J, Bigner D D, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu V E, Kinzler K W 2008 Science 321 1807

    [7]

    Jones S, Zhang X, Parsons D W, Lin J C, Leary R J, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong S M, Fu B, Lin M T, Calhoun E S, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith D R, Hidalgo M, Leach S D, Klein A P, Jaffee E M, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman J R, Kern S E, Hruban R H, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu V E, Kinzler K W 2008 Science 321 1801

    [8]

    Cancer Genome Atlas Research Network 2008 Nature 455 1061

    [9]

    Citri A, Yarden Y 2006 Nat. Rev. Mol. Cell Biol. 7 505

    [10]

    Hood L 2003 Mech. Ageing Dev. 124 9

    [11]

    Kitano H 2002 Science 295 1662

    [12]

    Iyengar R 2009 Sci. Signal 2 eg3

    [13]

    Friedman N, Linial M, Nachman I, Pe'er D 2000 J. Comput. Biol. 7 601

    [14]

    Kauffman S 1969 Nature 224 177

    [15]

    Schoeberl B, Eichler-Jonsson C, Gilles E D, Mller G 2002 Nat. Biotechnol. 20 370

    [16]

    Markevich N I, Tsyganov M A, Hoek J B, Kholodenko B N 2006 Mol. Syst. Biol. 2 61

    [17]

    Gillespie D T 2007 Annu. Rev. Phys. Chem. 58 35

    [18]

    Kirkpatrick S, Vecchi M P 1983 Science 220 671

    [19]

    Holland J H 1975 Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (Ann Arbor: Control Artificial Intelligence University of Michigan Press)

    [20]

    Jerne N K 1974 Ann. Immunol. (Paris) 125C 373

    [21]

    Kreeger P K, Lauffenburger D A 2010 Carcinogenesis 31 2

    [22]

    Khalil I G, Hill C 2005 Curr. Opin. Oncol. 17 44

    [23]

    Aldridge B B, Burke J M, Lauffenburger D A, Sorger P K 2006 Nat. Cell. Biol. 8 1195

    [24]

    Zhang X P, Cheng Z, Liu F, Wang W 2007 Phys. Rev. E 76 031924.

    [25]

    Tian X J, Zhang X P, Liu F, Wang W 2009 Phys. Rev. E 80 011926

    [26]

    Lu M, Jolly M K, Levine H, Onuchic J N, Ben-Jacob E 2013 Proc. Natl. Acad. Sci. USA. 110 18144

    [27]

    Huang B, Xia Y, Liu F, Wang W 2016 Sci. Rep. 6 28096

    [28]

    Karin M, Lin A 2002 Nat. Immunol. 3 221

    [29]

    Perkins N D 2012 Nat. Rev. Cancer 12 121

    [30]

    Nakanishi C, Toi M 2005 Nat. Rev. Cancer 5 297

    [31]

    Karin M, Ben-Neriah Y 2000 Annu. Rev.Immunol. 18 621

    [32]

    Hoffmann A, Levchenko A, Scott M L, Baltimore D 2002 Science 298 1241

    [33]

    Parada L F, Tabin C J, Shih C, Weinberg R A 1982 Nature 297 474

    [34]

    Bos J L 1989 Cancer Res. 49 4682

    [35]

    Bos J L, Rehmann H, Wittinghofer A 2007 Cell 129 865

    [36]

    Stites E C, Trampont P C, Ma Z, Ravichandran K S 2007 Science 318 463

    [37]

    Thiery J P 2002 Nat. Rev. Cancer 2 442

    [38]

    Nakaya Y, Sheng G 2008 Dev. Growth Differ. 50 755

    [39]

    Morel A P, Livre M, Thomas C, Hinkal G, Ansieau S, Puisieux A 2008 PLoS One 3 e2888

    [40]

    Yang A D, Camp E R, Fan F, Shen L, Gray M J, Liu W, Somcio R, Bauer T W, Wu Y, Hicklin D J, Ellis L M 2006 Cancer Res. 66 46

    [41]

    De Craene B, Berx G 2013 Nat. Rev. Cancer 13 97

    [42]

    Steinway S N, Zaudo J G, Ding W, Rountree C B, Feith D J, Loughran T P Jr, Albert R 2014 Cancer Res. 74 5963

    [43]

    Tait S W, Green D R 2010 Nat. Rev. Mol. Cell Biol. 11 621

    [44]

    Zhao L, Sun T, Pei J, Ouyang Q 2015 Proc. Natl. Acad. Sci. USA. 112 E4046

    [45]

    Zhang X P, Liu F, Cheng Z, Wang W 2009 Proc. Natl. Acad. Sci. USA. 106 12245

    [46]

    Zhang X P, Liu F, Wang W 2011 Proc. Natl. Acad. Sci. USA. 108 8990

    [47]

    Beg A A, Sha W C, Bronson R T, Ghosh S, Baltimore D 1995 Nature 376 167

    [48]

    Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer P H, Lavrik I N, Eils R 2010 Mol. Syst. Biol. 6 352

    [49]

    Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen G S, Reed J C 1998 J. Biol. Chem. 273 7787

    [50]

    Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel A E 2000 J. Immunol. 165 1743

    [51]

    Li X, Chen Y, Qi H, Liu L, Shuai J 2016 Oncotarget 7 34599

    [52]

    Futreal P A, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton M R 2004 Nat. Rev. Cancer 4 177

    [53]

    Kitano H 2004 Nat. Rev. Cancer. 4 227

    [54]

    Pujana M A, Han J D, Starita L M, Stevens K N, Tewari M, Ahn J S, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy W M, Rual J F, Levine D, Rozek L S, Gelman R S, Gunsalus K C, Greenberg R A, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Sol X, Hernndez P, Lzaro C, Nathanson K L, Weber B L, Cusick M E, Hill D E, Offit K, Livingston D M, Gruber S B, Parvin J D, Vidal M 2007 Nat. Genet. 39 1338

    [55]

    Lei X, Tian W, Zhu H, Chen T, Ao P 2015 Scientific Reports 5 13597

    [56]

    Barros R, Freund J N, David L, Almeida R 2012 Trends Mol. Med. 18 555

    [57]

    Tsukamoto T, Inada K, Tanaka H, Mizoshita T, Mihara M, Ushijima T, Yamamura Y, Nakamura S, Tatematsu M 2004 J. Cancer Res. Clin. Oncol. 130 135

    [58]

    Li S, Zhu X, Liu B, Wang G, Ao P 2015 Oncotarget 6 13607

    [59]

    Anderson A R, Quaranta V 2008 Nat. Rev. Cancer 8 227

    [60]

    Tomasetti C, Vogelstein B 2015 Science 347 78

    [61]

    Stratton M R, Campbell P J, Futreal P A 2009 Nature 458 719

    [62]

    Fischer K R, Durrans A, Lee S, Sheng J, Li F, Wong S T, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe R F, Vahdat L T, Altorki N K, Mittal V, Gao D 2015 Nature 527 472

    [63]

    Li W, Kang Y 2016 Trends Cancer 2 65

    [64]

    Wei S C, Yang J 2016 Trends Cell Biol. 26 111

    [65]

    Bild A H, Potti A, Nevins J R 2006 Nat. Rev. Cancer 6 735

    [66]

    Wang Z, Deisboeck T S 2014 Drug Discov. Today 19 145

  • [1]

    Torre L, Bray F, Siegle R L, Ferlay J, Lortet-Tieulent J, Jemal A 2012 CA Cancer J. Clin. 65 87

    [2]

    Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J 2015 CA Cancer J. Clin. 66 115

    [3]

    Hanahan D and Weinberg R A 2011 Cell 144 646

    [4]

    Hanahan D and Weinberg R A 2000 Cell 100 57

    [5]

    Futreal P A, Kasprzyk A, Birney E, Mullikin J C, Wooster R, Stratton M R 2001 Nature 409 850

    [6]

    Parsons D W, Jones S, Zhang X Lin J C, Leary R J, Angenendt P, Mankoo P, Carter H, Siu I M, Gallia G L, Olivi A, McLendon R, Rasheed B A, Keir S, Nikolskaya T, Nikolsky Y, Busam D A, Tekleab H, Diaz L A Jr, Hartigan J, Smith D R, Strausberg R L, Marie S K, Shinjo S M, Yan H, Riggins G J, Bigner D D, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu V E, Kinzler K W 2008 Science 321 1807

    [7]

    Jones S, Zhang X, Parsons D W, Lin J C, Leary R J, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong S M, Fu B, Lin M T, Calhoun E S, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith D R, Hidalgo M, Leach S D, Klein A P, Jaffee E M, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman J R, Kern S E, Hruban R H, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu V E, Kinzler K W 2008 Science 321 1801

    [8]

    Cancer Genome Atlas Research Network 2008 Nature 455 1061

    [9]

    Citri A, Yarden Y 2006 Nat. Rev. Mol. Cell Biol. 7 505

    [10]

    Hood L 2003 Mech. Ageing Dev. 124 9

    [11]

    Kitano H 2002 Science 295 1662

    [12]

    Iyengar R 2009 Sci. Signal 2 eg3

    [13]

    Friedman N, Linial M, Nachman I, Pe'er D 2000 J. Comput. Biol. 7 601

    [14]

    Kauffman S 1969 Nature 224 177

    [15]

    Schoeberl B, Eichler-Jonsson C, Gilles E D, Mller G 2002 Nat. Biotechnol. 20 370

    [16]

    Markevich N I, Tsyganov M A, Hoek J B, Kholodenko B N 2006 Mol. Syst. Biol. 2 61

    [17]

    Gillespie D T 2007 Annu. Rev. Phys. Chem. 58 35

    [18]

    Kirkpatrick S, Vecchi M P 1983 Science 220 671

    [19]

    Holland J H 1975 Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (Ann Arbor: Control Artificial Intelligence University of Michigan Press)

    [20]

    Jerne N K 1974 Ann. Immunol. (Paris) 125C 373

    [21]

    Kreeger P K, Lauffenburger D A 2010 Carcinogenesis 31 2

    [22]

    Khalil I G, Hill C 2005 Curr. Opin. Oncol. 17 44

    [23]

    Aldridge B B, Burke J M, Lauffenburger D A, Sorger P K 2006 Nat. Cell. Biol. 8 1195

    [24]

    Zhang X P, Cheng Z, Liu F, Wang W 2007 Phys. Rev. E 76 031924.

    [25]

    Tian X J, Zhang X P, Liu F, Wang W 2009 Phys. Rev. E 80 011926

    [26]

    Lu M, Jolly M K, Levine H, Onuchic J N, Ben-Jacob E 2013 Proc. Natl. Acad. Sci. USA. 110 18144

    [27]

    Huang B, Xia Y, Liu F, Wang W 2016 Sci. Rep. 6 28096

    [28]

    Karin M, Lin A 2002 Nat. Immunol. 3 221

    [29]

    Perkins N D 2012 Nat. Rev. Cancer 12 121

    [30]

    Nakanishi C, Toi M 2005 Nat. Rev. Cancer 5 297

    [31]

    Karin M, Ben-Neriah Y 2000 Annu. Rev.Immunol. 18 621

    [32]

    Hoffmann A, Levchenko A, Scott M L, Baltimore D 2002 Science 298 1241

    [33]

    Parada L F, Tabin C J, Shih C, Weinberg R A 1982 Nature 297 474

    [34]

    Bos J L 1989 Cancer Res. 49 4682

    [35]

    Bos J L, Rehmann H, Wittinghofer A 2007 Cell 129 865

    [36]

    Stites E C, Trampont P C, Ma Z, Ravichandran K S 2007 Science 318 463

    [37]

    Thiery J P 2002 Nat. Rev. Cancer 2 442

    [38]

    Nakaya Y, Sheng G 2008 Dev. Growth Differ. 50 755

    [39]

    Morel A P, Livre M, Thomas C, Hinkal G, Ansieau S, Puisieux A 2008 PLoS One 3 e2888

    [40]

    Yang A D, Camp E R, Fan F, Shen L, Gray M J, Liu W, Somcio R, Bauer T W, Wu Y, Hicklin D J, Ellis L M 2006 Cancer Res. 66 46

    [41]

    De Craene B, Berx G 2013 Nat. Rev. Cancer 13 97

    [42]

    Steinway S N, Zaudo J G, Ding W, Rountree C B, Feith D J, Loughran T P Jr, Albert R 2014 Cancer Res. 74 5963

    [43]

    Tait S W, Green D R 2010 Nat. Rev. Mol. Cell Biol. 11 621

    [44]

    Zhao L, Sun T, Pei J, Ouyang Q 2015 Proc. Natl. Acad. Sci. USA. 112 E4046

    [45]

    Zhang X P, Liu F, Cheng Z, Wang W 2009 Proc. Natl. Acad. Sci. USA. 106 12245

    [46]

    Zhang X P, Liu F, Wang W 2011 Proc. Natl. Acad. Sci. USA. 108 8990

    [47]

    Beg A A, Sha W C, Bronson R T, Ghosh S, Baltimore D 1995 Nature 376 167

    [48]

    Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer P H, Lavrik I N, Eils R 2010 Mol. Syst. Biol. 6 352

    [49]

    Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen G S, Reed J C 1998 J. Biol. Chem. 273 7787

    [50]

    Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel A E 2000 J. Immunol. 165 1743

    [51]

    Li X, Chen Y, Qi H, Liu L, Shuai J 2016 Oncotarget 7 34599

    [52]

    Futreal P A, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton M R 2004 Nat. Rev. Cancer 4 177

    [53]

    Kitano H 2004 Nat. Rev. Cancer. 4 227

    [54]

    Pujana M A, Han J D, Starita L M, Stevens K N, Tewari M, Ahn J S, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy W M, Rual J F, Levine D, Rozek L S, Gelman R S, Gunsalus K C, Greenberg R A, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Sol X, Hernndez P, Lzaro C, Nathanson K L, Weber B L, Cusick M E, Hill D E, Offit K, Livingston D M, Gruber S B, Parvin J D, Vidal M 2007 Nat. Genet. 39 1338

    [55]

    Lei X, Tian W, Zhu H, Chen T, Ao P 2015 Scientific Reports 5 13597

    [56]

    Barros R, Freund J N, David L, Almeida R 2012 Trends Mol. Med. 18 555

    [57]

    Tsukamoto T, Inada K, Tanaka H, Mizoshita T, Mihara M, Ushijima T, Yamamura Y, Nakamura S, Tatematsu M 2004 J. Cancer Res. Clin. Oncol. 130 135

    [58]

    Li S, Zhu X, Liu B, Wang G, Ao P 2015 Oncotarget 6 13607

    [59]

    Anderson A R, Quaranta V 2008 Nat. Rev. Cancer 8 227

    [60]

    Tomasetti C, Vogelstein B 2015 Science 347 78

    [61]

    Stratton M R, Campbell P J, Futreal P A 2009 Nature 458 719

    [62]

    Fischer K R, Durrans A, Lee S, Sheng J, Li F, Wong S T, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe R F, Vahdat L T, Altorki N K, Mittal V, Gao D 2015 Nature 527 472

    [63]

    Li W, Kang Y 2016 Trends Cancer 2 65

    [64]

    Wei S C, Yang J 2016 Trends Cell Biol. 26 111

    [65]

    Bild A H, Potti A, Nevins J R 2006 Nat. Rev. Cancer 6 735

    [66]

    Wang Z, Deisboeck T S 2014 Drug Discov. Today 19 145

  • [1] 陈惠燕, 李洛非, 王炜, 曹毅, 雷海. 力信号对心肌细胞跳动的调控. 物理学报, 2024, 73(8): 088701. doi: 10.7498/aps.73.20240095
    [2] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波. 红外及太赫兹辐照下细胞膜生物效应的研究进展. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212030
    [3] 郭雨怡, 石富坤, 王群, 季振宇, 庄杰. 高压纳秒脉冲电场的细胞器生物电效应综述. 物理学报, 2022, 71(6): 068701. doi: 10.7498/aps.71.20211850
    [4] 刘圣龙, 杨璐, 朱程君, 刘凯, 韩伟, 姚佳烽. 基于生物阻抗谱的细胞悬浮液浓度识别方法研究. 物理学报, 2022, 71(7): 078701. doi: 10.7498/aps.71.20211837
    [5] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波. 红外及太赫兹辐照下细胞膜生物效应的研究进展. 物理学报, 2021, 70(24): 248707. doi: 10.7498/aps.70.20212030
    [6] 姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛. 基于生物阻抗谱的细胞电学特性研究. 物理学报, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [7] 田小飞, 张欣. 稳态强磁场的细胞生物学效应. 物理学报, 2018, 67(14): 148701. doi: 10.7498/aps.67.20180378
    [8] 司铁岩, 袁军华, 吴艺林, 唐建新. 细菌运动中的物理生物学. 物理学报, 2016, 65(17): 178703. doi: 10.7498/aps.65.178703
    [9] 孙波. 胶原纤维网络和癌细胞的力学微环境. 物理学报, 2015, 64(5): 058201. doi: 10.7498/aps.64.058201
    [10] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用. 物理学报, 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [11] 贾冰, 古华光. 异质生物网络的同步节律的实验研究. 物理学报, 2012, 61(24): 240505. doi: 10.7498/aps.61.240505
    [12] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [13] 杨晓阔, 蔡理, 赵晓辉, 冯朝文. 参数不确定量子细胞神经网络与Lorenz超混沌系统的函数投影同步研究. 物理学报, 2010, 59(6): 3740-3746. doi: 10.7498/aps.59.3740
    [14] 李芹, 蔡理, 冯朝文. SET-MOS混合结构的细胞神经网络及其应用. 物理学报, 2009, 58(6): 4183-4188. doi: 10.7498/aps.58.4183
    [15] 冯朝文, 蔡 理, 李 芹. 基于单电子器件的细胞神经网络实现及应用研究. 物理学报, 2008, 57(4): 2462-2467. doi: 10.7498/aps.57.2462
    [16] 周小荣, 罗晓曙. 小世界生物神经网络的相干共振研究. 物理学报, 2008, 57(5): 2849-2853. doi: 10.7498/aps.57.2849
    [17] 吴忠强, 谭拂晓, 王绍仙. 基于无源化的细胞神经网络超混沌系统同步. 物理学报, 2006, 55(4): 1651-1658. doi: 10.7498/aps.55.1651
    [18] 王宏霞, 何 晨. 细胞神经网络的动力学行为. 物理学报, 2003, 52(10): 2409-2414. doi: 10.7498/aps.52.2409
    [19] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 物理学报, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [20] 彭建华, 田小健, 王培锦, 陈小兵. 在小信号激励下含非线性负阻网络电路系统的动力学行为. 物理学报, 1995, 44(2): 177-183. doi: 10.7498/aps.44.177
计量
  • 文章访问数:  7652
  • PDF下载量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-06-27
  • 刊出日期:  2016-09-05

/

返回文章
返回