搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质生物网络的同步节律的实验研究

贾冰 古华光

引用本文:
Citation:

异质生物网络的同步节律的实验研究

贾冰, 古华光

Experimental research on synchronous rhythms of biological network composed of heterogeneous cells

Jia Bing, Gu Hua-Guang
PDF
导出引用
  • 通过生物学实验研究了两个异质心肌细胞由独立到形成网络过程中的搏动节律随耦合强度的增加的动力学行为的变化. 没有耦合时, 两个细胞的搏动节律是独立的, 没有同步的搏动. 随着耦合强度的增加, 网络内的两个细胞搏动节律的相位差的绝对值的平均值和最大值急剧降低, 从非相位同步达到了相位同步, 但没有达到完全同步. 逐次对比两个细胞的搏动,非相位同步状态下只有部分搏动是同步的而其他搏动是不同步的, 而相位同步状态下所有的搏动都是同步的. 随着耦合强度的增加, 非相位同步状态下的同步搏动次数增加, 相位同步状态下的两细胞每次同步搏动的时间间隔降低但不为零 .研究结果不仅给出了异质生物网络节律同步的实验例证, 还获得了网络的节律从不同步到同步过程的动力学规律.
    The evolution of the dynamic behaviors of beating rhythms from independent states to the formation of network is studied in biological experiment on two heterogeneous cells. The beating rhythms are independent and not synchronous when there is no coupling between two cells. With the enhancement of the coupling strength, the mean and maximum of absolute value of the phase difference drastically decrease in the beating rhythms of the two cells, from non-phase synchronization to phase synchronization, eventually not to full synchronization. Some of beatings become synchronous while others not synchronous for non-synchronization states while all beatings are synchronous for the phase synchronization state. With the increase of coupling strength, the times of synchronized beatings increases for the non-phase synchronization state, and time interval between the corresponding synchronous beatings of the two cells decreases to a low but non-zero value for the phase synchronization state. The results not only provide experimental demonstration of rhythm synchronization in a biological network, but also give changing regularity in the forming process of synchronous rhythm in the heterogeneous network.
    • 基金项目: 国家自然科学基金(批准号: 11072135, 10772101)和中央高校基本科研业务费基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072135, 10772101), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Gray C M, König P, Engel A K, Singer W 1989 Nature 338 334

    [2]

    Steinmeta P N, Roy A, Fitzgerald P J 2000 Nature 404 187

    [3]

    Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 2

    [4]

    Pikovsky A, Rosenblum M, Kurth J 2001 Synchronization: A Universal Concept in Nonlinear Science (Cambridge: Cambridge University Press) p1

    [5]

    Boyett M R, Honjo H, Kodama I 2000 Cardiovasc. Res. 47 658

    [6]

    Li C 2001 Sino-Auricular Node (Beijing: Beijing Medical University Press) p1 (in Chinese) [李澈 2001 窦房结 (北京: 北京医科大学出版社) 第1页]

    [7]

    Verheijck E E, Wilders R, Joyner R W, Golod D A, Kumar R, Jongsma H J, Bouman L N, van Ginneken A C 1998 J. Gen. Physiol. 111 95

    [8]

    Kanakov O I, Osipov G V, Chan C K, Kurths J 2007 Chaos 17 015111

    [9]

    Cai D, Lai Y C, Winslow R L 1993 Phys. Rev. Lett. 71 2501

    [10]

    Cai D, Winslow R L, Noble D 1994 IEEE Trans. Biomed. Eng. 41 217

    [11]

    Winslow R L, Cai D, Varghese A, Lai Y C 1995 Chaos Solitons Fractals 5 491

    [12]

    Soen Y, Cohen N, Lipson D, Braun E 1999 Phys. Rev. Lett. 82 3556

    [13]

    Yamauchi Y, Harada A, Kawahara K 2002 Biol. Cybern. 86 147

    [14]

    Liu H J, Liu Z Q, Gu H G, Yang M H, Li L, Ren W 2006 Acta Bio. Phys. Sin. 22 441 (in Chinese) [刘红菊, 刘志强, 古华光, 杨明浩, 李莉, 任维 2006 生物物理学报 22 441]

    [15]

    Lerma C, Krogh-Madsen T, Guevara M R, Glass L 2007 J. Stat. Phys. 128 347

    [16]

    Zhang N, Zhang H M, Liu Z Q, Ding X L, Yang M H, Gu H G, Ren W 2009 Chin. Phys. Lett. 26 110501

    [17]

    Kim M Y, Aguilar M, Hodge A, Vigmond E, Shrier A, Glass L 2009 Phys. Rev. Lett. 103 058101

    [18]

    Sato D, Xie L H, Sovari A A, Tran D X, Morita N, Xie F, Karagueuzian H, Garfinkel A, Weiss J N, Qu Z 2009 Proc. Natl. Acad. Sci. USA 106 2983

    [19]

    Petrov V S, Osipov G V, Kurths J 2010 Phys. Rev. E 82 026208

    [20]

    Yuan L, Liu Z Q, Zhang H M, Yang M H, Wei C L, Ding X L, Gu H G, Ren W 2011 Chin. Phys. B 20 020508

    [21]

    Oyamada M, Kimura H, Oyamada Y, Miyamoto A, Ohshika H, Mori M 1994 Exp. Cell. Res. 212 351

    [22]

    Jongsma H J, Masson-Pevet M, Tsjernina L 1987 Basic Res. Cardiol. 82 454

    [23]

    Kimura H, Oyamada Y, Ohshika H, Mori M, Oyamda M 1995 Exp. Cell. Res. 220 348

    [24]

    Cohen N, Soen Y, Braun E 1998 Physica A 249 600

    [25]

    Yamauchi Y, Harada A, Kawahara K 2002 Biol. Cybern. 86 147

    [26]

    Hachiro T, Kawahara K, Sato R, Yamauchi Y, Matsuyama D 2007 Bio. Systems 90 707

    [27]

    Nakayama Y, Kawahara K, Yoneyama M, Hachiro T 2005 Biol. Rhythm Res. 36 317

    [28]

    Dong S, Gu H G, Yuan L 2011 Acta Bio. Phys. Sin. 27 627 (in Chinese) [董珊, 古华光, 袁岚 2011 生物物理学报 27 627]

    [29]

    Elson R C, Selverston A I, Huerta R, Rulkov N F, Rabinovich M I, Abarbane H D I 1998 Phys. Rev. Lett. 81 5692

    [30]

    Norwood C R, Castaneda A R, Norwood W I 1980 J. Mol. Cell. Cardiol. 12 201

  • [1]

    Gray C M, König P, Engel A K, Singer W 1989 Nature 338 334

    [2]

    Steinmeta P N, Roy A, Fitzgerald P J 2000 Nature 404 187

    [3]

    Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 2

    [4]

    Pikovsky A, Rosenblum M, Kurth J 2001 Synchronization: A Universal Concept in Nonlinear Science (Cambridge: Cambridge University Press) p1

    [5]

    Boyett M R, Honjo H, Kodama I 2000 Cardiovasc. Res. 47 658

    [6]

    Li C 2001 Sino-Auricular Node (Beijing: Beijing Medical University Press) p1 (in Chinese) [李澈 2001 窦房结 (北京: 北京医科大学出版社) 第1页]

    [7]

    Verheijck E E, Wilders R, Joyner R W, Golod D A, Kumar R, Jongsma H J, Bouman L N, van Ginneken A C 1998 J. Gen. Physiol. 111 95

    [8]

    Kanakov O I, Osipov G V, Chan C K, Kurths J 2007 Chaos 17 015111

    [9]

    Cai D, Lai Y C, Winslow R L 1993 Phys. Rev. Lett. 71 2501

    [10]

    Cai D, Winslow R L, Noble D 1994 IEEE Trans. Biomed. Eng. 41 217

    [11]

    Winslow R L, Cai D, Varghese A, Lai Y C 1995 Chaos Solitons Fractals 5 491

    [12]

    Soen Y, Cohen N, Lipson D, Braun E 1999 Phys. Rev. Lett. 82 3556

    [13]

    Yamauchi Y, Harada A, Kawahara K 2002 Biol. Cybern. 86 147

    [14]

    Liu H J, Liu Z Q, Gu H G, Yang M H, Li L, Ren W 2006 Acta Bio. Phys. Sin. 22 441 (in Chinese) [刘红菊, 刘志强, 古华光, 杨明浩, 李莉, 任维 2006 生物物理学报 22 441]

    [15]

    Lerma C, Krogh-Madsen T, Guevara M R, Glass L 2007 J. Stat. Phys. 128 347

    [16]

    Zhang N, Zhang H M, Liu Z Q, Ding X L, Yang M H, Gu H G, Ren W 2009 Chin. Phys. Lett. 26 110501

    [17]

    Kim M Y, Aguilar M, Hodge A, Vigmond E, Shrier A, Glass L 2009 Phys. Rev. Lett. 103 058101

    [18]

    Sato D, Xie L H, Sovari A A, Tran D X, Morita N, Xie F, Karagueuzian H, Garfinkel A, Weiss J N, Qu Z 2009 Proc. Natl. Acad. Sci. USA 106 2983

    [19]

    Petrov V S, Osipov G V, Kurths J 2010 Phys. Rev. E 82 026208

    [20]

    Yuan L, Liu Z Q, Zhang H M, Yang M H, Wei C L, Ding X L, Gu H G, Ren W 2011 Chin. Phys. B 20 020508

    [21]

    Oyamada M, Kimura H, Oyamada Y, Miyamoto A, Ohshika H, Mori M 1994 Exp. Cell. Res. 212 351

    [22]

    Jongsma H J, Masson-Pevet M, Tsjernina L 1987 Basic Res. Cardiol. 82 454

    [23]

    Kimura H, Oyamada Y, Ohshika H, Mori M, Oyamda M 1995 Exp. Cell. Res. 220 348

    [24]

    Cohen N, Soen Y, Braun E 1998 Physica A 249 600

    [25]

    Yamauchi Y, Harada A, Kawahara K 2002 Biol. Cybern. 86 147

    [26]

    Hachiro T, Kawahara K, Sato R, Yamauchi Y, Matsuyama D 2007 Bio. Systems 90 707

    [27]

    Nakayama Y, Kawahara K, Yoneyama M, Hachiro T 2005 Biol. Rhythm Res. 36 317

    [28]

    Dong S, Gu H G, Yuan L 2011 Acta Bio. Phys. Sin. 27 627 (in Chinese) [董珊, 古华光, 袁岚 2011 生物物理学报 27 627]

    [29]

    Elson R C, Selverston A I, Huerta R, Rulkov N F, Rabinovich M I, Abarbane H D I 1998 Phys. Rev. Lett. 81 5692

    [30]

    Norwood C R, Castaneda A R, Norwood W I 1980 J. Mol. Cell. Cardiol. 12 201

  • [1] 白婧, 关富荣, 唐国宁. 神经元网络中局部同步引发的各种效应. 物理学报, 2021, 70(17): 170502. doi: 10.7498/aps.70.20210142
    [2] 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报, 2021, 70(8): 080501. doi: 10.7498/aps.70.20201251
    [3] 舒睿, 陈伟, 肖井华. 多个耦合星型网络的同步优化. 物理学报, 2019, 68(18): 180503. doi: 10.7498/aps.68.20190308
    [4] 徐明明, 陆君安, 周进. 两层星形网络的特征值谱及同步能力. 物理学报, 2016, 65(2): 028902. doi: 10.7498/aps.65.028902
    [5] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究. 物理学报, 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [6] 戴存礼, 吴威, 赵艳艳, 姚雪霞, 赵志刚. 权重分布对加权局域世界网络动力学同步的影响. 物理学报, 2013, 62(10): 108903. doi: 10.7498/aps.62.108903
    [7] 王利利, 乔成功, 唐国宁. 最优的Newman-Watts网络与遍历网络的同步. 物理学报, 2013, 62(24): 240510. doi: 10.7498/aps.62.240510
    [8] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [9] 吴望生, 唐国宁. 不同耦合下混沌神经元网络的同步. 物理学报, 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [10] 吕翎, 李钢, 徐文, 吕娜, 范鑫. 复Ginzburg-Landau方程时空混沌的网络同步与参量辨识. 物理学报, 2012, 61(6): 060507. doi: 10.7498/aps.61.060507
    [11] 吕翎, 李钢, 张檬, 李雨珊, 韦琳玲, 于淼. 全局耦合网络的参量辨识与时空混沌同步. 物理学报, 2011, 60(9): 090505. doi: 10.7498/aps.60.090505
    [12] 戴存礼, 赵艳艳, 吴威, 曾伦武. 移动Ad Hoc网络动力学同步能力的研究. 物理学报, 2010, 59(11): 7719-7723. doi: 10.7498/aps.59.7719
    [13] 卞秋香, 姚洪兴. 非线性耦合多重边赋权复杂网络的同步. 物理学报, 2010, 59(5): 3027-3034. doi: 10.7498/aps.59.3027
    [14] 吕翎, 李钢, 商锦玉, 沈娜, 张新, 柳爽, 朱佳博. 最近邻耦合网络的时空混沌同步研究. 物理学报, 2010, 59(9): 5966-5971. doi: 10.7498/aps.59.5966
    [15] 吕翎, 邹家蕊, 杨明, 孟乐, 郭丽, 柴元. 大规模富社团网络的时空混沌同步. 物理学报, 2010, 59(10): 6864-6870. doi: 10.7498/aps.59.6864
    [16] 吴然超. 时滞离散神经网络的同步控制. 物理学报, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [17] 敬晓丹, 吕翎. 非线性耦合完全网络的时空混沌同步. 物理学报, 2009, 58(11): 7539-7543. doi: 10.7498/aps.58.7539
    [18] 戴存礼, 刘曙娥, 田 亮, 施大宁. 推广的失活网络动力学同步优化. 物理学报, 2008, 57(8): 4800-4804. doi: 10.7498/aps.57.4800
    [19] 王占山, 张化光, 王智良. 一类混沌神经网络的全局同步. 物理学报, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [20] 关新平, 唐英干, 范正平, 王益群. 基于神经网络的混沌系统鲁棒自适应同步. 物理学报, 2001, 50(11): 2112-2115. doi: 10.7498/aps.50.2112
计量
  • 文章访问数:  9705
  • PDF下载量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-11
  • 修回日期:  2012-06-27
  • 刊出日期:  2012-12-05

/

返回文章
返回