搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压纳秒脉冲电场的细胞器生物电效应综述

郭雨怡 石富坤 王群 季振宇 庄杰

引用本文:
Citation:

高压纳秒脉冲电场的细胞器生物电效应综述

郭雨怡, 石富坤, 王群, 季振宇, 庄杰

A review on bioelectrical effects of cellular organelles by high voltage nanosecond pulsed electric fields

Guo Yu-Yi, Shi Fu-Kun, Wang Qun, Ji Zhen-Yu, Zhuang Jie
PDF
HTML
导出引用
  • 纳秒级高压脉冲电场的生物医学应用是近年来新兴的交叉学科研究领域, 相比于微秒和毫秒级脉冲电场, 高压纳秒脉冲电场不仅能够导致细胞膜结构极化和介电击穿, 产生膜电穿孔, 还可以穿透至细胞内部, 引发诸如细胞骨架解聚、胞内钙离子释放及线粒体膜电位耗散等细胞器生物电效应, 吸引了学术界的广泛关注. 本文首先介绍高压纳秒脉冲电场及其细胞器生物电作用的物理模型; 然后对高压纳秒脉冲电场与细胞骨架、线粒体、内质网、细胞核等亚细胞结构的相互作用研究进行综述和总结; 强调高压纳秒脉冲电场的细胞器作用与细胞死亡、细胞间通信等生物效应之间的联系; 最后, 凝练当前高压纳秒脉冲电场在生物医学研究中的关键技术问题, 并对未来潜在的研究方向进行展望.
    The biomedical application of high-voltage nanosecond pulsed electric fields (nsPEFs) has become an emerging interdisciplinary research field in recent years. Compared with microsecond and millisecond pulsed electric fields, high-voltage nsPEFs can not only lead the cell membrane structure to polarize and dielectric break down the cell membrane structure, i.e. membrane electroporation, but also penetrate into the cell, triggering off organelle bioelectrical effects such as cytoskeleton depolymerization, intracellular calcium ion release, and mitochondrial membrane potential dissipation. Extensive attention has been attracted from related academic communities. In this article, the following aspects are involved. First, the physical model of high-voltage nsPEFs and its bioelectrical effects on cellular organelles are introduced. Then, the existing researches of the interactions of high-voltage nsPEFs with cytoskeleton, mitochondria, endoplasmic reticulum, cell nucleus and other subcellular structure are reviewed and summarized; the relationship between the influence on cellular organelles by high-voltage nsPEFs and the biological effects such as cell death and intercellular communication is highlighted. Finally, the key technical challenges to high-voltage nsPEFs in biomedical research are condensed, followed by the prospects of future research directions.
      通信作者: 庄杰, jzhuang@sibet.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFC0119102, 2019YFC0118004, 2020YFC0122301)资助的课题
      Corresponding author: Zhuang Jie, jzhuang@sibet.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFC0119102, 2019YFC0118004, 2020YFC0122301) .
    [1]

    高宇, 门业堃, 张建, 刘范嘉, 邓永迪, 王振 2016 高电压技术 42 2675Google Scholar

    Gao Y, Men Y K, Zhang J, Liu F J, Deng Y D, Wang Z 2016 High Voltage Eng. 42 2675Google Scholar

    [2]

    Amr A G, Schoenbch K H 2000 IEEE Trans. Plasma Sci. 28 115Google Scholar

    [3]

    Sitzmann W, Vorobiev E, Lebovka N 2016 Innovative Food Sci. Emerg. 37 302Google Scholar

    [4]

    Barbosa-Cánovas G V, Altunakar B 2006 Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications (Boston: Springer US) pp3–26

    [5]

    Takaki K, Yoshida K, Saito T, Kusaka T, Yamaguchi R, Takahashi K, Sakamoto Y 2014 Microorganisms 2 58Google Scholar

    [6]

    Takaki K, Yamazaki N, Mukaigawa S, Fujiwara T, Kofujita H, Takahasi K, Narimatsu M, Nagane K 2009 Acta Phys. Pol. A 115 1062Google Scholar

    [7]

    Deore A B, Sapakal V D, Shikalgar T S, Jagtap M J, Bhinde C J 2017 Innovative Pharm. 5 147

    [8]

    Heller R, Jaroszeski M J, Reintgen D S, Puleo C A, DeConti R C, Gilbert R A, Glass L F 1998 Cancers 83 148Google Scholar

    [9]

    Heller R, Gilbert R, Jaroszeski M J 1999 Adv. Drug Deliver. Rev. 35 119Google Scholar

    [10]

    姚陈果, 宁郡怡, 刘红梅, 郑爽, 董守龙 2020 电工技术学报 35 115Google Scholar

    Yao C G, Ning J Y, Liu H M, Zheng S, Dong S L 2020 Trans. China Electrotech. Soc. 35 115Google Scholar

    [11]

    Golberg A, Broelsch G, Bohr S, Mihm M, Austen W, Albadawi H, Watkins M, Yarmush M 2013 Technology 1 1Google Scholar

    [12]

    Golberg A, Yarmush M 2013 IEEE Trans. Bio-Med. Eng. 60 707Google Scholar

    [13]

    Schoenbach K H, Joshi R P, Kolb J F, Nianyong C, Stacey M, Blackmore P F, Buescher E S, Beebe S J 2004 Proc. IEEE 92 1122Google Scholar

    [14]

    Graybill P M, Davalos R V 2020 Cancers 12 1132Google Scholar

    [15]

    Scarlett S S, White J A, Blackmore P F, Schoenbach K H, Kolb J F 2009 Biochim. Biophys. Acta Biomembr. 1788 1168Google Scholar

    [16]

    Rubinsky B, Romeo S, Zeni L, Sarti M, Sannino A, Scarfì M R, Vernier P T, Zeni O 2011 PLoS One 6 e28419Google Scholar

    [17]

    Beebe S, Sain N, Ren W 2013 Cells 2 136Google Scholar

    [18]

    Chen X, Kolb J F, Swanson R J, Schoenbach K H, Beebe S J 2010 Pigm. Cell Melanoma R. 23 554Google Scholar

    [19]

    Vadlamani R A, Nie Y, Detwiler D A, Dhanabal A, Kraft A M, Kuang S, Gavin T P, Garner A L 2019 J. R. Soc. Interface 16 20190079Google Scholar

    [20]

    Chen J, Huang Y, Yang J, Li K, Jiang Y, Heng B C, Cai Q, Zhang J, Ge Z 2020 J. Tissue Eng. Regen. Med. 14 1136Google Scholar

    [21]

    Kim V, Gudvangen E, Kondratiev O, Redondo L M, Xiao S, Pakhomov A 2021 Int. J. Mol. Sci. 22 7051Google Scholar

    [22]

    Casciola M, Xiao S, Pakhomov A 2017 Sci. Rep. 7 10453

    [23]

    Tolstykh G P, Valdez C M, Montgomery N D, Cantu J C, Sedelnikova A, Ibey B L 2021 Bioelectrochemistry 142 107930Google Scholar

    [24]

    Stampfli R 1958 An Acad. Brasil Ciens. 30 57

    [25]

    Neumann E, Schaeferridder M, Wang Y, Hofschneider P H 1982 EMBO. J. 1 841Google Scholar

    [26]

    Weaver J C 1993 J. Cell. Biochem. 51 426Google Scholar

    [27]

    Glaser R W, Leikin S L, Chernomordik L V, Pastushenko V F, Sokirko A I 1988 Biochim. Biophys. Acta Biomembr. 940 275Google Scholar

    [28]

    Weaver J C, Chizmadzhev Y A 1996 Bioelectrochemistry 41 135

    [29]

    Somiari S, Glasspool-Malone J, Drabick J J, Gilbert R A, Heller R, Jaroszeski M J, Malone R W 2000 Mol. Ther. 2 178Google Scholar

    [30]

    史秋生, 杜联芳, 张焱锋 2018 肿瘤影像学 27 242

    Shi Q S, Du L F, Zhang Y F 2018 Oncoradiology 27 242

    [31]

    李小曼, 万利杰, 王晓娟, 谢红梅, 兰建, 刘晓云 2017 现代生物医学进展 17 1190Google Scholar

    Li X M, Wan L J, Wang X J, Xie H M, Lan J, Liu X Y 2017 Prog. Mod. Biomed. 17 1190Google Scholar

    [32]

    Deipolyi A R, Golberg A, Yarmush M L, Arellano R S, Oklu R 2014 Diagn. Interv. Radiol. 20 147Google Scholar

    [33]

    庞小峰 2008 生物电磁学 (北京: 国防工业出版社) 第101页

    Pang X F 2008 Bioelectromagnetism (Beijing: National Defense Industry Press) p101 (in Chinese)

    [34]

    Buescher E S, Schoenbach K H 2003 IEEE Trans. Dielectr. Electr. Insul. 10 788Google Scholar

    [35]

    Koga T, Morotomi-Yano K, Sakugawa T, Saitoh H, Yano K I 2019 Sci. Rep. 9 8451Google Scholar

    [36]

    Guerrero-Hernandez A, Beebe S J, Chen Y J, Sain N M, Schoenbach K H, Xiao S 2012 PLoS One 7 e51349Google Scholar

    [37]

    Napotnik T B, Wu Y H, Gundersen M A, Miklavčič D, Vernier P T 2012 Bioelectromagnetics 33 257Google Scholar

    [38]

    Jansen E D, Thomas R J, Wilmink G J, Ibey B L, Estlack L E, Roth C C, Cerna C Z, Wilmink G J, Ibey B L 2014 Proceedings of the SPIE San Francisco, California, USA, March 13, 2014 p89411S

    [39]

    Rossi A, Pakhomova O N, Mollica P A, Casciola M, Mangalanathan U, Pakhomov A G, Muratori C 2019 Cancers 11 2034Google Scholar

    [40]

    Hirai H, Miyake M, Nagano A, Teranishi K, Shimomura N, Oyadomari S 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC) Santa Fe, New Mexico, USA, June 1–5, 2014 p419

    [41]

    Thompson G L, Roth C C, Dalzell D R, Kuipers M A, Ibey B L 2014 J. Biomed. Opt. 19 1Google Scholar

    [42]

    Thompson G, Beier H, Ibey B 2018 Bioengineering 5 103Google Scholar

    [43]

    Schoenbach K H, Katsuki S, Stark R H, Buescher E S, Beebe S J 2002 IEEE Trans. Plasma Sci. 30 293Google Scholar

    [44]

    Schoenbach K H 2018 Bioelectromagnetics 39 257Google Scholar

    [45]

    姚陈果, 莫登斌, 孙才新, 陈新, 熊正爱 2008 生物医学工程学杂志 25 1206Google Scholar

    Yao C G, Mo D B, Sun C X, Chen X, Xiong Z A 2008 J. Biomed. Eng. 25 1206Google Scholar

    [46]

    米彦 2009 博士学位论文 (重庆: 重庆大学)

    Mi Y 2009 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [47]

    Pakhomov A G, Shevin R, White J A, Kolb J F, Pakhomova O N, Joshi R P, Schoenbach K H 2007 Arch. Biochem. Biophys. 465 109Google Scholar

    [48]

    Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner L H, Frey W, Nick P 2009 Biochem. Biophys. Res. Commun. 387 590Google Scholar

    [49]

    Stacey M, Fox P, Buescher S, Kolb J 2011 Bioelectrochemistry 82 131Google Scholar

    [50]

    Pakhomov A G, Xiao S, Pakhomova O N, Semenov I, Kuipers M A, Ibey B L 2014 Bioelectrochemistry 100 88Google Scholar

    [51]

    Wilmink G J, Thompson G L, Roth C, Tolstykh G, Kuipers M, Ibey B L, Ibey B L 2013 Proceedings of the SPIE San Francisco, California, USA, February 23, 2013 p85850T

    [52]

    Steuer A, Schmidt A, Labohá P, Babica P, Kolb J F 2016 Bioelectrochemistry 112 33Google Scholar

    [53]

    Carr L, Bardet S M, Burke R C, Arnaud-Cormos D, Leveque P, O'Connor R P 2017 Sci. Rep. 7 41267

    [54]

    Tolstykh G P, Thompson G L, Beier H T, Steelman Z A, Ibey B L 2017 BB Reports 9 36Google Scholar

    [55]

    Perrier D L, Vahid A, Kathavi V, Stam L, Rems L, Mulla Y, Muralidharan A, Koenderink G H, Kreutzer M T, Boukany P E 2019 Sci. Rep. 9 8151Google Scholar

    [56]

    Chafai D E, Sulimenko V, Havelka D, Kubínová L, Dráber P, Cifra M 2019 Adv. Mater. 31 1903636Google Scholar

    [57]

    Chafai D E, Vostárek F, Dráberová E, Havelka D, Arnaud-Cormos D, Leveque P, Janáček J, Kubínová L, Cifra M, Dráber P 2020 Adv. Biosyst. 4 2000070Google Scholar

    [58]

    Thompson G L, Roth C C, Kuipers M A, Tolstykh G P, Beier H T, Ibey B L 2016 Biochem. Biophys. Res. Commun. 470 35Google Scholar

    [59]

    Xiao D, Tang L, Zeng C, Wang J, Luo X, Yao C, Sun C 2011 Cell Biol. Int. 35 99Google Scholar

    [60]

    Ford W E, Ren W, Blackmore P F, Schoenbach K H, Beebe S J 2010 Arch. Biochem. Biophys. 497 82Google Scholar

    [61]

    Steuer A, Wende K, Babica P, Kolb J F 2017 Eur. Biophys. J. Biophys. 46 567Google Scholar

    [62]

    Rassokhin M A, Pakhomov A G 2012 J. Membr. Biol. 245 521Google Scholar

    [63]

    Ren W, Sain N M, Beebe S J 2012 Biochem. Biophys. Res. Commun. 421 808Google Scholar

    [64]

    Beebe S J 2015 Bioelectrochemistry 103 52Google Scholar

    [65]

    Morotomi-Yano K, Yano K I, Research B 2015 Biochem. Biotechnol. Res. 3 51

    [66]

    Mao Z, Zhang Y, Lu N, Cheng S, Hong R, Liu Q H 2019 Small 16 1904047Google Scholar

    [67]

    Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P 2010 Int. J. Cancer 127 1727Google Scholar

    [68]

    Beebe S J, Fox P M, Rec L J, Willis L K, Schoenbach K H 2003 FASEB J. 17 1Google Scholar

    [69]

    Awasthi K, Nakabayashi T, Ohta N 2016 ACS Omega 1 396Google Scholar

    [70]

    Taibi A, Perrin M L, Albouys J, Jacques J, Yardin C, Durand-Fontanier S, Bardet S M 2021 Clin. Transl. Oncol. 23 1220Google Scholar

    [71]

    Nuccitelli R, McDaniel A, Anand S, Cha J, Mallon Z, Berridge J C, Uecker D 2017 J. Immunother Cancer 5 1Google Scholar

    [72]

    Guo S, Jing Y, Burcus N I, Lassiter B P, Tanaz R, Heller R, Beebe S J 2018 Int. J. Cancer 142 629Google Scholar

    [73]

    Vernier P T, Sun Y, Marcu L, Salemi S, Craft C M, Gundersen M A 2003 Biochem. Biophys. Res. Commun. 310 286Google Scholar

    [74]

    Buescher E S, Smith R R, Schoenbach K H 2004 IEEE Trans. Plasma Sci. 32 1563Google Scholar

    [75]

    Beebe S J, Blackmore P F, White J, Joshi R P, Schoenbach K H 2004 Physiol. Meas. 25 1077Google Scholar

    [76]

    Zhang J, Blackmore P F, Hargrave B Y, Xiao S, Beebe S J, Schoenbach K H 2008 Arch. Biochem. Biophys. 471 240Google Scholar

    [77]

    Wang S F, Chen J X, Chen M T, Vernier P T, Gundersen M A, Valderrabano M 2009 Biophys. J. 96 1640Google Scholar

    [78]

    Beier H T, Roth C C, Tolstykh G P, Ibey B L 2012 Biochem. Biophys. Res. Commun. 423 863Google Scholar

    [79]

    Semenov I, Xiao S, Pakhomov A G 2013 Biochim. Biophys. Acta Biomembr. 1828 981Google Scholar

    [80]

    Pakhomova O N, Gregory B, Semenov I, Pakhomov A G 2014 Biochim. Biophys. Acta Biomembr. 1838 2547Google Scholar

    [81]

    Fukuda H, Miyake M, Hirai H, Teranishi K, Shimomura N, Oyadomari S 2015 IEEE Pulsed Power Conference (PPC) Austin, Texas, USA, May 31-June 4, 2015 p1

    [82]

    Zhou P, He F, Han Y, Liu B, Wei S 2018 Bioelectrochemistry 124 7Google Scholar

    [83]

    Furumoto Y, Sato D, Teranishi K, Shimomura N, Hamada Y, Miyake M, Oyadomari S 2018 IEEE International Power Modulator and High Voltage Conference (IPMHVC) Jackson, Wyoming, USA, June 3–7, 2018 p456

    [84]

    Zaklit J, Chat Te Rjee I, Leblanc N, Craviso G L 2019 Biochim. Biophys. Acta Biomembr. 1861 1180Google Scholar

    [85]

    Ohnishi N, Fujiwara Y, Kamezaki T, Katsuki S 2019 IEEE Trans. Bio-Med. Eng. 66 2259Google Scholar

    [86]

    Liu J, Lu Q, Liang R, Guo J, Wang K, Dong F, Wang J, Zhang J, Fang J 2019 Phys. Rev. Appl. 11 024001Google Scholar

    [87]

    Jin D Y, Hamada Y, Furumoto Y, Izutani A, Taniuchi S, Miyake M, Oyadomari M, Teranishi K, Shimomura N, Oyadomari S 2020 Plos One 15 e0229948Google Scholar

    [88]

    Semenov I, Casciola M, Ibey B L, Xiao S, Pakhomov A G 2018 Bioelectrochemistry 121 135Google Scholar

    [89]

    Chen N, Schoenbach K H, Kolb J F, James Swanson R, Garner A L, Yang J, Joshi R P, Beebe S J 2004 Biochem. Biophys. Res. Commun. 317 421Google Scholar

    [90]

    Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson R, Beebe S, Kolb J, Schoenbach K 2006 Biochem. Biophys. Res. Commun. 343 351Google Scholar

    [91]

    Nuccitelli R, Chen X, Pakhomov A G, Baldwin W H, Sheikh S, Pomicter J L, Ren W, Osgood C, Swanson R J, Kolb J F, Beebe S J, Schoenbach K H 2009 Int. J. Cancer 125 438Google Scholar

    [92]

    Chen N, Garner A L, Chen G, Jing Y, Deng Y, Swanson R J, Kolb J F, Beebe S J, Joshi R P, Schoenbach K H 2007 Biochem. Biophys. Res. Commun. 364 220Google Scholar

    [93]

    Ibey B L, Pakhomov A G, Gregory B W, Khorokhorina V A, Roth C C, Rassokhin M A, Bernhard J A, Wilmink G J, Pakhomova O N 2010 Biochim. Biophys. Acta General Subjects 1800 1210Google Scholar

    [94]

    Ren W, Beebe S J 2011 Apoptosis 16 382Google Scholar

    [95]

    Beebe J S 2015 J. Nanomed. Res. 2 00016Google Scholar

    [96]

    Muratori C, Pakhomov A G, Gianulis E, Meads J, Casciola M, Mollica P A, Pakhomova O N 2017 J. Biol. Chem. 292 19381Google Scholar

    [97]

    Chang A Y, Liu X, Tian H, Hua L, Yang Z, Wang S 2020 Sci. Rep. 10 1Google Scholar

    [98]

    Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe S J, Buescher S 2003 Mutat. Res-Gen. Tox. En. 542 65Google Scholar

    [99]

    Beebe S J, White J, Blackmore P F, Deng Y, Somers K, Schoenbach K H 2003 DNA Cell Biol. 22 785Google Scholar

    [100]

    Schoenbach K H, Be Ebe S J, Buescher E S 2010 Bioelectromagnetics 22 440Google Scholar

    [101]

    Tekle E, Oubrahim H, Dzekunov S M, Kolb J F, Schoenbach K H, Chock P B 2005 Biophys. J. 89 274Google Scholar

    [102]

    Humphrey J D, Dufresne E R, Schwartz M A 2014 Nat. Rev. Mol. Cell Biol. 15 802Google Scholar

    [103]

    Paszek M J, Zahir N, Johnson K R, Lakins J N, Rozenberg G I, Gefen A, Reinhart-King C A, Margulies S S, Dembo M, Boettiger D, Hammer D A, Weaver V M 2005 Cancer Cell 8 241Google Scholar

    [104]

    肖英, 程爱兰 2016 中国肿瘤临床 43 1007Google Scholar

    Xiao Y, Cheng A L 2016 Chin. J. Clin. Oncol. 43 1007Google Scholar

    [105]

    Haberkorn I, Siegenthaler L, Buchmann L, Neutsch L, Mathys A 2021 Biotechnol. Adv. 53 107780Google Scholar

    [106]

    Havelka D, Chafai D E, Krivosudský O, Klebanovych A, Vostárek F, Kubínová L, Dráber P, Cifra M 2019 Adv. Mater. Technol. 5 1900669Google Scholar

    [107]

    Chopinet L, Roduit C, Rols M P, Dague E 2013 Biochim. Biophys. ActaBiomembr. 1828 2223Google Scholar

    [108]

    Louise C, Etienne D, Marie-Pierre R 2014 Cytoskeleton 71 587Google Scholar

    [109]

    Svitkina T 2018 Csh. Perspect. Biol. 10 a018267Google Scholar

    [110]

    Shi F, Steuer A, Zhuang J, Kolb J F 2019 IEEE Trans. Bio-Med. Eng. 66 2010Google Scholar

    [111]

    Shi F, Zhuang J, Kolb J F 2019 J. Phys. D:Appl. Phys. 52 495401Google Scholar

    [112]

    Shi F, Kolb J F 2020 Biosens. Bioelectron. 157 112149Google Scholar

    [113]

    刘泰槰 1999 中国科学基金 1999 50Google Scholar

    Liu T P 1999 Sci. Found. China 1999 50Google Scholar

    [114]

    Lewis R S 2001 Annu. Rev. Immunol. 19 497Google Scholar

    [115]

    Feske S 2007 Nat. Rev. Immunol. 7 690Google Scholar

    [116]

    Nanosecond Pulsed Electric Fields Activate Intracellular Signaling Pathways. Tolstykh G P, Thompson T, Beier H T, Roth C C, Ibey B L https://spie.org/news/4736-nanosecond-pulsed-electric-fields-activate-intracellular-signaling-pathways?SSO=1 [2021-11-24]

    [117]

    陈娜子, 姜潮, 李校堃 2016 中国生物工程杂志 36 76Google Scholar

    Chen N Z, Jiang C, Li X K 2016 China Biotechnology 36 76Google Scholar

    [118]

    Liu J, Chen X, Zheng S 2021 Front. Med. 15 170Google Scholar

    [119]

    Batista Napotnik T, Polajzer T, Miklavcic D 2021 Bioelectrochemistry 141 107871Google Scholar

    [120]

    Zharkova L P, Romanchenko I V, Buldakov M A, Priputnev P V, Bolshakov M A, Rostov V V 2018 20th International Symposium on High-Current Electronics (ISHCE) Tomsk, Russia, September 16–22, 2018 p158

    [121]

    Nuccitelli R, McDaniel A, Connolly R, Zelickson B, Hartman H 2020 Laser Surg. Med. 52 882Google Scholar

    [122]

    Tolstykh G P, Cantu J C, Tarango M, Ibey B L 2019 Biochim. Biophys. Acta Biomembr. 1861 685Google Scholar

    [123]

    Awasthi K, Chang F L, Hsu H Y, Ohta N 2021 Sens. Actuators, B 347 130635Google Scholar

    [124]

    Pakhomova O N, Khorokhorina V A, Bowman A M, Rodaitė-Riševičienė R, Saulis G, Xiao S, Pakhomov A G 2012 Arch. Biochem. Biophys. 527 55Google Scholar

    [125]

    Guo S, Burcus N I, Scott M, Jing Y, Semenov I 2021 Sci. Rep. 11 23745

    [126]

    高薇, 侯微, 李伟, 王玉帅, 王英平 2014 中国畜牧兽医 41 150

    Gao W, Hou W, Li W, Wang Y S, Wang Y P 2014 China Anim. Husb. Vet. Med. 41 150

    [127]

    Zhuang J, Steuer A, Jing Y, Kolb J F 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC) San Diego, California, USA, June 3–7, 2012 p106

    [128]

    岑超, 陈新华, 郑树森 2015 浙江大学学报(医学版) 44 678Google Scholar

    Cen C, Chen X H, Zheng S S 2015 J. Zhejiang Univ., Med. Sci. 44 678Google Scholar

    [129]

    Kielbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, Kulbacka J 2021 Sci. Rep. 11 15835Google Scholar

    [130]

    Perrier D L, Rems L, Boukany P E 2017 Adv. Colloid Interface Sci. 249 248Google Scholar

    [131]

    Qian J, Chen T, Wu Q, Zhou L, Zhou W, Wu L, Wang S, Lu J, Wang W, Li D, Xie H, Su R, Guo D, Liu Z, He N, Yin S, Zheng S 2021 Cancer Lett. 498 242Google Scholar

    [132]

    Dan T, Okamo T, Abe K, Katsuki S, Sakugawa T, Akiyama H 2010 Abstracts IEEE International Conference on Plasma Science Norfolk, Virginia, USA, June 20–24, 2010 p1

    [133]

    Della Valle E, Marracino P, Pakhomova O, Liberti M, Apollonio F 2019 PloS One 14 e0221685Google Scholar

    [134]

    Guo J S, Dong F H, Ding L, Wang K L, Zhang J, Fang J 2018 Bioelectrochemistry 123 26Google Scholar

  • 图 1  PEFs导致的细胞膜EP示意图

    Fig. 1.  Schematic diagram of PEF-induced membrane electroporation.

    图 2  PEFs中哺乳动物细胞等效电路模型

    Fig. 2.  Equivalent circuit model for the mammalian cells with the exposure to PEFs, where individual subcellular components are described by a combination of the resistor or capacitor.

    图 3  NsPEFs细胞器效应的文献发表情况

    Fig. 3.  Literature research about the intracellular effects for cells exposured to nsPEFs.

    图 4  NsPEFs对贴壁细胞的影响. 1, 破坏细胞与细胞间连接; 2, 细胞膜电穿孔; 3, 细胞脱落

    Fig. 4.  Effect of nsPEFs on adherent cells. 1, Disruption of the intercallular connections; 2, electroporation; 3, cell necrosis or shedding.

    图 5  NsPEFs诱导的细胞内凋亡途径

    Fig. 5.  Apoptosis pathways for cells after exposure to nsPEFs

    表 1  nsPEFs的细胞器生物电效应总结

    Table 1.  Summary of effects of nsPEFs on cell organelles.

    细胞器细胞类型脉冲宽度/ns电场强度/(kV·cm–1)主要结果概述
    细胞骨架GH3, HeLa[47]6012肌动蛋白丝变短、变细、碎片化、解聚、收缩、分离, 细胞弹性降低;
    微管屈曲、解聚、破碎;
    微管聚合速率和聚合数量发生变化;
    中间丝破坏;
    细胞通透性改变;
    细胞肿胀、起泡、细胞质颗粒化;
    细胞间通讯受抑制;
    细胞骨架的破坏受钙离子调控: 1)高钙离子浓度溶液中, nsPEFs处理会使微管解聚, 破坏肌动蛋白丝; 2) 低钙离子浓度溶液中, nsPEFs处理后微管显示正常结构
    BY-2[48]1033
    Jurkat, HeLa, SV40[49]6015, 60
    CHO-K1[50]60019.2
    Jurkat, U937, CHO-K1[51]10150
    WB-F344[52]1005—35
    U87-MG[53]10, 10044
    CHO[54]60016.2
    GUV[55]3—10
    tubulin[56]1020
    U2OS[57]
    CHO-K1[58]10, 6027.7, 150
    HepG2[59]4508
    B16-F10[60]30012, 18, 26, 40, 60
    WB-F344, WB-Ras[61]10020
    U-937[62]6010
    线粒体Jurkat[63]600—60线粒体膜通透性改变, 线粒体的通透性转换孔(MPTP)不可逆过度开放;
    线粒体膜电位损失;
    线粒体肿胀;
    线粒体膜蛋白受影响, 线粒体膜间隙蛋白 Cyt-C, AIF 释放入胞浆;
    调控线粒体凋亡途径, Caspase-3表达量增加, Bax 表达量增加;
    线粒体释放细胞色素C;
    影响线粒体信号传导途径;
    ATP消耗;
    胞内ROS水平升高
    N1-S1[36]6000—80
    Jurkat, U-937[46]1050, 150
    Jurkat[64]6000—60
    HeLa S3[65]8020
    HCT116, NCM460[66]10, 600, 8003, 4, 5
    Jurkat, B10-2[67]10—300≤ 300
    Jurkat, HL-60[68]10, 60, 300150, 60, 25
    Jurkat, HL-60[34]10—30015—60
    Hela[69]10, 20, 30, 5040, 45
    CT-26 tumor cells[70]1022
    MCA205, McA-RH7777,
    JurkatE6-1[71]
    1006—25
    4T1[72]10046—54
    内质网Jurkat[73]7, 10, 3025内质网穿孔、损伤;
    钙离子释放, 引发胞内钙离子浓度升高;
    内质网应激响应;
    免疫原性细胞死亡;
    肿瘤细胞内与内质网凋亡相关蛋白Caspase-3的释放量增加;
    内质网凋亡信号通路起作用
    Jurkat, HL-60[74]60, 30015—60
    Jurkat, HL-60[75]10, 60, 30026, 40, 60, 150, 300 (10 ns); 16, 26, 40, 60 (60 ns); 40 (300 ns)
    Newly outdated platelet[76]3000—30
    Cardiac cells from rats[77]410—80
    Jurkat[15]6025, 50, 100
    NG108-15[78]416.2
    CHO-K1[79]603.7—30
    U937, CHO-K1, BPAE[80]300
    HeLa, HEK293T, C2C12[40]7, 10, 2010—50
    HeLa, HEK293, MEF[81]1410, 20, 25, 30, 40, 50
    MG63[82]606.7, 13.3, 16.7, 20,
    26.7, 33.3
    HeLa, MEF[83]14, 7080, 100 (14 ns), 30, 50, 70, 75 (70 ns)
    Bovine chromaffin cells [84]5170
    B16 F10, EL-4[39]2007
    Hela[85]20, 500100, 20
    Murine secondary oocytes [86]104—10
    MEF[87]60—30030, 60
    CHO-K1, NG108[88]300, 6003.7, 7.4, 11, 1
    细胞核HL-60[89]10, 6065 (10 ns), 25 (60 ns)核膜穿孔;
    DNA双链破坏、DNA片段化;
    选择性降低DNA甲基化;
    核蛋白复合物改变, 抑制snRNA的生成, 改变亚核结构
    B16 F10[18,90,91]30040
    Jurkat[92]10150
    Jurkat, U-937[93]10, 3002.25, 4.5, 150, 290
    B16F10[60]3000—60
    E4 squamous cell [94]3000—60
    Jurkat[16]6010, 15, 25
    N1-S1[17]6000—80
    N1-S1[95]10050
    CHO[58]10, 60018.2, 27.7, 16.7
    HEK 293[96]30025.5
    HL-60[36]8020
    K562, CT26. WT[97]60050
    HL60, Jurkat, ALL[98]10, 60, 30026, 60, 150, 300
    B10-2, HL-60[99]10, 50, 60, 30026, 60, 75, 150
    溶酶体CHO-K1[41]1, 20, 60016.2溶酶体去膜化、溶酶体损伤;
    溶酶体运动受影响, 高钙离子浓度溶液下, 溶酶体迁移停止;
    CHO-K1[42]60016.2
    囊泡Human eosinophils [100]6036, 53囊泡穿孔;
    诱导细胞外囊泡的释放
    COS-7[101]5020—300
    下载: 导出CSV
  • [1]

    高宇, 门业堃, 张建, 刘范嘉, 邓永迪, 王振 2016 高电压技术 42 2675Google Scholar

    Gao Y, Men Y K, Zhang J, Liu F J, Deng Y D, Wang Z 2016 High Voltage Eng. 42 2675Google Scholar

    [2]

    Amr A G, Schoenbch K H 2000 IEEE Trans. Plasma Sci. 28 115Google Scholar

    [3]

    Sitzmann W, Vorobiev E, Lebovka N 2016 Innovative Food Sci. Emerg. 37 302Google Scholar

    [4]

    Barbosa-Cánovas G V, Altunakar B 2006 Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications (Boston: Springer US) pp3–26

    [5]

    Takaki K, Yoshida K, Saito T, Kusaka T, Yamaguchi R, Takahashi K, Sakamoto Y 2014 Microorganisms 2 58Google Scholar

    [6]

    Takaki K, Yamazaki N, Mukaigawa S, Fujiwara T, Kofujita H, Takahasi K, Narimatsu M, Nagane K 2009 Acta Phys. Pol. A 115 1062Google Scholar

    [7]

    Deore A B, Sapakal V D, Shikalgar T S, Jagtap M J, Bhinde C J 2017 Innovative Pharm. 5 147

    [8]

    Heller R, Jaroszeski M J, Reintgen D S, Puleo C A, DeConti R C, Gilbert R A, Glass L F 1998 Cancers 83 148Google Scholar

    [9]

    Heller R, Gilbert R, Jaroszeski M J 1999 Adv. Drug Deliver. Rev. 35 119Google Scholar

    [10]

    姚陈果, 宁郡怡, 刘红梅, 郑爽, 董守龙 2020 电工技术学报 35 115Google Scholar

    Yao C G, Ning J Y, Liu H M, Zheng S, Dong S L 2020 Trans. China Electrotech. Soc. 35 115Google Scholar

    [11]

    Golberg A, Broelsch G, Bohr S, Mihm M, Austen W, Albadawi H, Watkins M, Yarmush M 2013 Technology 1 1Google Scholar

    [12]

    Golberg A, Yarmush M 2013 IEEE Trans. Bio-Med. Eng. 60 707Google Scholar

    [13]

    Schoenbach K H, Joshi R P, Kolb J F, Nianyong C, Stacey M, Blackmore P F, Buescher E S, Beebe S J 2004 Proc. IEEE 92 1122Google Scholar

    [14]

    Graybill P M, Davalos R V 2020 Cancers 12 1132Google Scholar

    [15]

    Scarlett S S, White J A, Blackmore P F, Schoenbach K H, Kolb J F 2009 Biochim. Biophys. Acta Biomembr. 1788 1168Google Scholar

    [16]

    Rubinsky B, Romeo S, Zeni L, Sarti M, Sannino A, Scarfì M R, Vernier P T, Zeni O 2011 PLoS One 6 e28419Google Scholar

    [17]

    Beebe S, Sain N, Ren W 2013 Cells 2 136Google Scholar

    [18]

    Chen X, Kolb J F, Swanson R J, Schoenbach K H, Beebe S J 2010 Pigm. Cell Melanoma R. 23 554Google Scholar

    [19]

    Vadlamani R A, Nie Y, Detwiler D A, Dhanabal A, Kraft A M, Kuang S, Gavin T P, Garner A L 2019 J. R. Soc. Interface 16 20190079Google Scholar

    [20]

    Chen J, Huang Y, Yang J, Li K, Jiang Y, Heng B C, Cai Q, Zhang J, Ge Z 2020 J. Tissue Eng. Regen. Med. 14 1136Google Scholar

    [21]

    Kim V, Gudvangen E, Kondratiev O, Redondo L M, Xiao S, Pakhomov A 2021 Int. J. Mol. Sci. 22 7051Google Scholar

    [22]

    Casciola M, Xiao S, Pakhomov A 2017 Sci. Rep. 7 10453

    [23]

    Tolstykh G P, Valdez C M, Montgomery N D, Cantu J C, Sedelnikova A, Ibey B L 2021 Bioelectrochemistry 142 107930Google Scholar

    [24]

    Stampfli R 1958 An Acad. Brasil Ciens. 30 57

    [25]

    Neumann E, Schaeferridder M, Wang Y, Hofschneider P H 1982 EMBO. J. 1 841Google Scholar

    [26]

    Weaver J C 1993 J. Cell. Biochem. 51 426Google Scholar

    [27]

    Glaser R W, Leikin S L, Chernomordik L V, Pastushenko V F, Sokirko A I 1988 Biochim. Biophys. Acta Biomembr. 940 275Google Scholar

    [28]

    Weaver J C, Chizmadzhev Y A 1996 Bioelectrochemistry 41 135

    [29]

    Somiari S, Glasspool-Malone J, Drabick J J, Gilbert R A, Heller R, Jaroszeski M J, Malone R W 2000 Mol. Ther. 2 178Google Scholar

    [30]

    史秋生, 杜联芳, 张焱锋 2018 肿瘤影像学 27 242

    Shi Q S, Du L F, Zhang Y F 2018 Oncoradiology 27 242

    [31]

    李小曼, 万利杰, 王晓娟, 谢红梅, 兰建, 刘晓云 2017 现代生物医学进展 17 1190Google Scholar

    Li X M, Wan L J, Wang X J, Xie H M, Lan J, Liu X Y 2017 Prog. Mod. Biomed. 17 1190Google Scholar

    [32]

    Deipolyi A R, Golberg A, Yarmush M L, Arellano R S, Oklu R 2014 Diagn. Interv. Radiol. 20 147Google Scholar

    [33]

    庞小峰 2008 生物电磁学 (北京: 国防工业出版社) 第101页

    Pang X F 2008 Bioelectromagnetism (Beijing: National Defense Industry Press) p101 (in Chinese)

    [34]

    Buescher E S, Schoenbach K H 2003 IEEE Trans. Dielectr. Electr. Insul. 10 788Google Scholar

    [35]

    Koga T, Morotomi-Yano K, Sakugawa T, Saitoh H, Yano K I 2019 Sci. Rep. 9 8451Google Scholar

    [36]

    Guerrero-Hernandez A, Beebe S J, Chen Y J, Sain N M, Schoenbach K H, Xiao S 2012 PLoS One 7 e51349Google Scholar

    [37]

    Napotnik T B, Wu Y H, Gundersen M A, Miklavčič D, Vernier P T 2012 Bioelectromagnetics 33 257Google Scholar

    [38]

    Jansen E D, Thomas R J, Wilmink G J, Ibey B L, Estlack L E, Roth C C, Cerna C Z, Wilmink G J, Ibey B L 2014 Proceedings of the SPIE San Francisco, California, USA, March 13, 2014 p89411S

    [39]

    Rossi A, Pakhomova O N, Mollica P A, Casciola M, Mangalanathan U, Pakhomov A G, Muratori C 2019 Cancers 11 2034Google Scholar

    [40]

    Hirai H, Miyake M, Nagano A, Teranishi K, Shimomura N, Oyadomari S 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC) Santa Fe, New Mexico, USA, June 1–5, 2014 p419

    [41]

    Thompson G L, Roth C C, Dalzell D R, Kuipers M A, Ibey B L 2014 J. Biomed. Opt. 19 1Google Scholar

    [42]

    Thompson G, Beier H, Ibey B 2018 Bioengineering 5 103Google Scholar

    [43]

    Schoenbach K H, Katsuki S, Stark R H, Buescher E S, Beebe S J 2002 IEEE Trans. Plasma Sci. 30 293Google Scholar

    [44]

    Schoenbach K H 2018 Bioelectromagnetics 39 257Google Scholar

    [45]

    姚陈果, 莫登斌, 孙才新, 陈新, 熊正爱 2008 生物医学工程学杂志 25 1206Google Scholar

    Yao C G, Mo D B, Sun C X, Chen X, Xiong Z A 2008 J. Biomed. Eng. 25 1206Google Scholar

    [46]

    米彦 2009 博士学位论文 (重庆: 重庆大学)

    Mi Y 2009 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [47]

    Pakhomov A G, Shevin R, White J A, Kolb J F, Pakhomova O N, Joshi R P, Schoenbach K H 2007 Arch. Biochem. Biophys. 465 109Google Scholar

    [48]

    Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner L H, Frey W, Nick P 2009 Biochem. Biophys. Res. Commun. 387 590Google Scholar

    [49]

    Stacey M, Fox P, Buescher S, Kolb J 2011 Bioelectrochemistry 82 131Google Scholar

    [50]

    Pakhomov A G, Xiao S, Pakhomova O N, Semenov I, Kuipers M A, Ibey B L 2014 Bioelectrochemistry 100 88Google Scholar

    [51]

    Wilmink G J, Thompson G L, Roth C, Tolstykh G, Kuipers M, Ibey B L, Ibey B L 2013 Proceedings of the SPIE San Francisco, California, USA, February 23, 2013 p85850T

    [52]

    Steuer A, Schmidt A, Labohá P, Babica P, Kolb J F 2016 Bioelectrochemistry 112 33Google Scholar

    [53]

    Carr L, Bardet S M, Burke R C, Arnaud-Cormos D, Leveque P, O'Connor R P 2017 Sci. Rep. 7 41267

    [54]

    Tolstykh G P, Thompson G L, Beier H T, Steelman Z A, Ibey B L 2017 BB Reports 9 36Google Scholar

    [55]

    Perrier D L, Vahid A, Kathavi V, Stam L, Rems L, Mulla Y, Muralidharan A, Koenderink G H, Kreutzer M T, Boukany P E 2019 Sci. Rep. 9 8151Google Scholar

    [56]

    Chafai D E, Sulimenko V, Havelka D, Kubínová L, Dráber P, Cifra M 2019 Adv. Mater. 31 1903636Google Scholar

    [57]

    Chafai D E, Vostárek F, Dráberová E, Havelka D, Arnaud-Cormos D, Leveque P, Janáček J, Kubínová L, Cifra M, Dráber P 2020 Adv. Biosyst. 4 2000070Google Scholar

    [58]

    Thompson G L, Roth C C, Kuipers M A, Tolstykh G P, Beier H T, Ibey B L 2016 Biochem. Biophys. Res. Commun. 470 35Google Scholar

    [59]

    Xiao D, Tang L, Zeng C, Wang J, Luo X, Yao C, Sun C 2011 Cell Biol. Int. 35 99Google Scholar

    [60]

    Ford W E, Ren W, Blackmore P F, Schoenbach K H, Beebe S J 2010 Arch. Biochem. Biophys. 497 82Google Scholar

    [61]

    Steuer A, Wende K, Babica P, Kolb J F 2017 Eur. Biophys. J. Biophys. 46 567Google Scholar

    [62]

    Rassokhin M A, Pakhomov A G 2012 J. Membr. Biol. 245 521Google Scholar

    [63]

    Ren W, Sain N M, Beebe S J 2012 Biochem. Biophys. Res. Commun. 421 808Google Scholar

    [64]

    Beebe S J 2015 Bioelectrochemistry 103 52Google Scholar

    [65]

    Morotomi-Yano K, Yano K I, Research B 2015 Biochem. Biotechnol. Res. 3 51

    [66]

    Mao Z, Zhang Y, Lu N, Cheng S, Hong R, Liu Q H 2019 Small 16 1904047Google Scholar

    [67]

    Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P 2010 Int. J. Cancer 127 1727Google Scholar

    [68]

    Beebe S J, Fox P M, Rec L J, Willis L K, Schoenbach K H 2003 FASEB J. 17 1Google Scholar

    [69]

    Awasthi K, Nakabayashi T, Ohta N 2016 ACS Omega 1 396Google Scholar

    [70]

    Taibi A, Perrin M L, Albouys J, Jacques J, Yardin C, Durand-Fontanier S, Bardet S M 2021 Clin. Transl. Oncol. 23 1220Google Scholar

    [71]

    Nuccitelli R, McDaniel A, Anand S, Cha J, Mallon Z, Berridge J C, Uecker D 2017 J. Immunother Cancer 5 1Google Scholar

    [72]

    Guo S, Jing Y, Burcus N I, Lassiter B P, Tanaz R, Heller R, Beebe S J 2018 Int. J. Cancer 142 629Google Scholar

    [73]

    Vernier P T, Sun Y, Marcu L, Salemi S, Craft C M, Gundersen M A 2003 Biochem. Biophys. Res. Commun. 310 286Google Scholar

    [74]

    Buescher E S, Smith R R, Schoenbach K H 2004 IEEE Trans. Plasma Sci. 32 1563Google Scholar

    [75]

    Beebe S J, Blackmore P F, White J, Joshi R P, Schoenbach K H 2004 Physiol. Meas. 25 1077Google Scholar

    [76]

    Zhang J, Blackmore P F, Hargrave B Y, Xiao S, Beebe S J, Schoenbach K H 2008 Arch. Biochem. Biophys. 471 240Google Scholar

    [77]

    Wang S F, Chen J X, Chen M T, Vernier P T, Gundersen M A, Valderrabano M 2009 Biophys. J. 96 1640Google Scholar

    [78]

    Beier H T, Roth C C, Tolstykh G P, Ibey B L 2012 Biochem. Biophys. Res. Commun. 423 863Google Scholar

    [79]

    Semenov I, Xiao S, Pakhomov A G 2013 Biochim. Biophys. Acta Biomembr. 1828 981Google Scholar

    [80]

    Pakhomova O N, Gregory B, Semenov I, Pakhomov A G 2014 Biochim. Biophys. Acta Biomembr. 1838 2547Google Scholar

    [81]

    Fukuda H, Miyake M, Hirai H, Teranishi K, Shimomura N, Oyadomari S 2015 IEEE Pulsed Power Conference (PPC) Austin, Texas, USA, May 31-June 4, 2015 p1

    [82]

    Zhou P, He F, Han Y, Liu B, Wei S 2018 Bioelectrochemistry 124 7Google Scholar

    [83]

    Furumoto Y, Sato D, Teranishi K, Shimomura N, Hamada Y, Miyake M, Oyadomari S 2018 IEEE International Power Modulator and High Voltage Conference (IPMHVC) Jackson, Wyoming, USA, June 3–7, 2018 p456

    [84]

    Zaklit J, Chat Te Rjee I, Leblanc N, Craviso G L 2019 Biochim. Biophys. Acta Biomembr. 1861 1180Google Scholar

    [85]

    Ohnishi N, Fujiwara Y, Kamezaki T, Katsuki S 2019 IEEE Trans. Bio-Med. Eng. 66 2259Google Scholar

    [86]

    Liu J, Lu Q, Liang R, Guo J, Wang K, Dong F, Wang J, Zhang J, Fang J 2019 Phys. Rev. Appl. 11 024001Google Scholar

    [87]

    Jin D Y, Hamada Y, Furumoto Y, Izutani A, Taniuchi S, Miyake M, Oyadomari M, Teranishi K, Shimomura N, Oyadomari S 2020 Plos One 15 e0229948Google Scholar

    [88]

    Semenov I, Casciola M, Ibey B L, Xiao S, Pakhomov A G 2018 Bioelectrochemistry 121 135Google Scholar

    [89]

    Chen N, Schoenbach K H, Kolb J F, James Swanson R, Garner A L, Yang J, Joshi R P, Beebe S J 2004 Biochem. Biophys. Res. Commun. 317 421Google Scholar

    [90]

    Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson R, Beebe S, Kolb J, Schoenbach K 2006 Biochem. Biophys. Res. Commun. 343 351Google Scholar

    [91]

    Nuccitelli R, Chen X, Pakhomov A G, Baldwin W H, Sheikh S, Pomicter J L, Ren W, Osgood C, Swanson R J, Kolb J F, Beebe S J, Schoenbach K H 2009 Int. J. Cancer 125 438Google Scholar

    [92]

    Chen N, Garner A L, Chen G, Jing Y, Deng Y, Swanson R J, Kolb J F, Beebe S J, Joshi R P, Schoenbach K H 2007 Biochem. Biophys. Res. Commun. 364 220Google Scholar

    [93]

    Ibey B L, Pakhomov A G, Gregory B W, Khorokhorina V A, Roth C C, Rassokhin M A, Bernhard J A, Wilmink G J, Pakhomova O N 2010 Biochim. Biophys. Acta General Subjects 1800 1210Google Scholar

    [94]

    Ren W, Beebe S J 2011 Apoptosis 16 382Google Scholar

    [95]

    Beebe J S 2015 J. Nanomed. Res. 2 00016Google Scholar

    [96]

    Muratori C, Pakhomov A G, Gianulis E, Meads J, Casciola M, Mollica P A, Pakhomova O N 2017 J. Biol. Chem. 292 19381Google Scholar

    [97]

    Chang A Y, Liu X, Tian H, Hua L, Yang Z, Wang S 2020 Sci. Rep. 10 1Google Scholar

    [98]

    Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe S J, Buescher S 2003 Mutat. Res-Gen. Tox. En. 542 65Google Scholar

    [99]

    Beebe S J, White J, Blackmore P F, Deng Y, Somers K, Schoenbach K H 2003 DNA Cell Biol. 22 785Google Scholar

    [100]

    Schoenbach K H, Be Ebe S J, Buescher E S 2010 Bioelectromagnetics 22 440Google Scholar

    [101]

    Tekle E, Oubrahim H, Dzekunov S M, Kolb J F, Schoenbach K H, Chock P B 2005 Biophys. J. 89 274Google Scholar

    [102]

    Humphrey J D, Dufresne E R, Schwartz M A 2014 Nat. Rev. Mol. Cell Biol. 15 802Google Scholar

    [103]

    Paszek M J, Zahir N, Johnson K R, Lakins J N, Rozenberg G I, Gefen A, Reinhart-King C A, Margulies S S, Dembo M, Boettiger D, Hammer D A, Weaver V M 2005 Cancer Cell 8 241Google Scholar

    [104]

    肖英, 程爱兰 2016 中国肿瘤临床 43 1007Google Scholar

    Xiao Y, Cheng A L 2016 Chin. J. Clin. Oncol. 43 1007Google Scholar

    [105]

    Haberkorn I, Siegenthaler L, Buchmann L, Neutsch L, Mathys A 2021 Biotechnol. Adv. 53 107780Google Scholar

    [106]

    Havelka D, Chafai D E, Krivosudský O, Klebanovych A, Vostárek F, Kubínová L, Dráber P, Cifra M 2019 Adv. Mater. Technol. 5 1900669Google Scholar

    [107]

    Chopinet L, Roduit C, Rols M P, Dague E 2013 Biochim. Biophys. ActaBiomembr. 1828 2223Google Scholar

    [108]

    Louise C, Etienne D, Marie-Pierre R 2014 Cytoskeleton 71 587Google Scholar

    [109]

    Svitkina T 2018 Csh. Perspect. Biol. 10 a018267Google Scholar

    [110]

    Shi F, Steuer A, Zhuang J, Kolb J F 2019 IEEE Trans. Bio-Med. Eng. 66 2010Google Scholar

    [111]

    Shi F, Zhuang J, Kolb J F 2019 J. Phys. D:Appl. Phys. 52 495401Google Scholar

    [112]

    Shi F, Kolb J F 2020 Biosens. Bioelectron. 157 112149Google Scholar

    [113]

    刘泰槰 1999 中国科学基金 1999 50Google Scholar

    Liu T P 1999 Sci. Found. China 1999 50Google Scholar

    [114]

    Lewis R S 2001 Annu. Rev. Immunol. 19 497Google Scholar

    [115]

    Feske S 2007 Nat. Rev. Immunol. 7 690Google Scholar

    [116]

    Nanosecond Pulsed Electric Fields Activate Intracellular Signaling Pathways. Tolstykh G P, Thompson T, Beier H T, Roth C C, Ibey B L https://spie.org/news/4736-nanosecond-pulsed-electric-fields-activate-intracellular-signaling-pathways?SSO=1 [2021-11-24]

    [117]

    陈娜子, 姜潮, 李校堃 2016 中国生物工程杂志 36 76Google Scholar

    Chen N Z, Jiang C, Li X K 2016 China Biotechnology 36 76Google Scholar

    [118]

    Liu J, Chen X, Zheng S 2021 Front. Med. 15 170Google Scholar

    [119]

    Batista Napotnik T, Polajzer T, Miklavcic D 2021 Bioelectrochemistry 141 107871Google Scholar

    [120]

    Zharkova L P, Romanchenko I V, Buldakov M A, Priputnev P V, Bolshakov M A, Rostov V V 2018 20th International Symposium on High-Current Electronics (ISHCE) Tomsk, Russia, September 16–22, 2018 p158

    [121]

    Nuccitelli R, McDaniel A, Connolly R, Zelickson B, Hartman H 2020 Laser Surg. Med. 52 882Google Scholar

    [122]

    Tolstykh G P, Cantu J C, Tarango M, Ibey B L 2019 Biochim. Biophys. Acta Biomembr. 1861 685Google Scholar

    [123]

    Awasthi K, Chang F L, Hsu H Y, Ohta N 2021 Sens. Actuators, B 347 130635Google Scholar

    [124]

    Pakhomova O N, Khorokhorina V A, Bowman A M, Rodaitė-Riševičienė R, Saulis G, Xiao S, Pakhomov A G 2012 Arch. Biochem. Biophys. 527 55Google Scholar

    [125]

    Guo S, Burcus N I, Scott M, Jing Y, Semenov I 2021 Sci. Rep. 11 23745

    [126]

    高薇, 侯微, 李伟, 王玉帅, 王英平 2014 中国畜牧兽医 41 150

    Gao W, Hou W, Li W, Wang Y S, Wang Y P 2014 China Anim. Husb. Vet. Med. 41 150

    [127]

    Zhuang J, Steuer A, Jing Y, Kolb J F 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC) San Diego, California, USA, June 3–7, 2012 p106

    [128]

    岑超, 陈新华, 郑树森 2015 浙江大学学报(医学版) 44 678Google Scholar

    Cen C, Chen X H, Zheng S S 2015 J. Zhejiang Univ., Med. Sci. 44 678Google Scholar

    [129]

    Kielbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, Kulbacka J 2021 Sci. Rep. 11 15835Google Scholar

    [130]

    Perrier D L, Rems L, Boukany P E 2017 Adv. Colloid Interface Sci. 249 248Google Scholar

    [131]

    Qian J, Chen T, Wu Q, Zhou L, Zhou W, Wu L, Wang S, Lu J, Wang W, Li D, Xie H, Su R, Guo D, Liu Z, He N, Yin S, Zheng S 2021 Cancer Lett. 498 242Google Scholar

    [132]

    Dan T, Okamo T, Abe K, Katsuki S, Sakugawa T, Akiyama H 2010 Abstracts IEEE International Conference on Plasma Science Norfolk, Virginia, USA, June 20–24, 2010 p1

    [133]

    Della Valle E, Marracino P, Pakhomova O, Liberti M, Apollonio F 2019 PloS One 14 e0221685Google Scholar

    [134]

    Guo J S, Dong F H, Ding L, Wang K L, Zhang J, Fang J 2018 Bioelectrochemistry 123 26Google Scholar

  • [1] 王蕾, 马玺越, 陈克安, 刘韬. 自由场中大尺寸有源微穿孔板吸声器的低频吸声性能. 物理学报, 2023, 72(6): 064304. doi: 10.7498/aps.72.20222151
    [2] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性. 物理学报, 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [3] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波. 红外及太赫兹辐照下细胞膜生物效应的研究进展. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212030
    [4] 王澄瑶, 李旭, 卢晓云. COP-PDMS微流控芯片的制备及在太赫兹对肠道上皮细胞生物效应中的应用. 物理学报, 2021, 70(24): 248706. doi: 10.7498/aps.70.20211807
    [5] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波. 红外及太赫兹辐照下细胞膜生物效应的研究进展. 物理学报, 2021, 70(24): 248707. doi: 10.7498/aps.70.20212030
    [6] 李元, 李林波, 温嘉烨, 倪正全, 张冠军. 基于电致伸缩效应的水中纳秒脉冲放电起始机制. 物理学报, 2021, 70(2): 024701. doi: 10.7498/aps.70.20201048
    [7] 姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛. 基于生物阻抗谱的细胞电学特性研究. 物理学报, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [8] 田小飞, 张欣. 稳态强磁场的细胞生物学效应. 物理学报, 2018, 67(14): 148701. doi: 10.7498/aps.67.20180378
    [9] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [10] 邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器. 物理学报, 2016, 65(15): 154204. doi: 10.7498/aps.65.154204
    [11] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜. 双绞铝丝纳秒电爆炸实验研究. 物理学报, 2014, 63(20): 205203. doi: 10.7498/aps.63.205203
    [12] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [13] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波. 1064 nm纳秒脉冲激光诱导硅表面微结构研究. 物理学报, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [14] 吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真. 石英管对空气中锥-板结构纳秒脉冲放电的影响. 物理学报, 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [15] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [16] 韩敬华, 冯国英, 杨李茗, 张秋慧, 贾 俊, 李 刚, 朱启华, 周寿桓. 纳秒激光脉冲在空气中聚焦的临界自由电子密度问题. 物理学报, 2008, 57(10): 6304-6310. doi: 10.7498/aps.57.6304
    [17] 胡競丹, 蔡 静, 陈俊蓉, 李 权, 赵可清. 六氮杂苯并菲及其衍生物电荷传输性质的理论研究. 物理学报, 2008, 57(9): 5464-5468. doi: 10.7498/aps.57.5464
    [18] 邵 涛, 孙广生, 严 萍, 谷 琛, 张适昌. 纳秒脉冲下高能量快电子逃逸过程的计算. 物理学报, 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [19] 谭新玉, 张端明, 李智华, 关 丽, 李 莉. 纳秒脉冲激光沉积薄膜过程中的烧蚀特性研究. 物理学报, 2005, 54(8): 3915-3921. doi: 10.7498/aps.54.3915
    [20] 孙大睿, 宋晏蓉, 张志刚, 刘永军, 柴 路, 王清月. 用于飞秒脉冲放大器的马丁内兹展宽器与欧浮纳展宽器性能比较. 物理学报, 2003, 52(4): 870-874. doi: 10.7498/aps.52.870
计量
  • 文章访问数:  11373
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-05
  • 修回日期:  2021-11-23
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回