搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨流域高超声速绕流环境Boltzmann模型方程统一算法研究

李志辉 彭傲平 方方 李四新 张顺玉

引用本文:
Citation:

跨流域高超声速绕流环境Boltzmann模型方程统一算法研究

李志辉, 彭傲平, 方方, 李四新, 张顺玉

Gas-kinetic unified algorithm for hypersonic aerothermodynamics covering various flow regimes solving Boltzmann model equation

Li Zhi-Hui, Peng Ao-Ping, Fang Fang, Li Si-Xin, Zhang Shun-Yu
PDF
导出引用
  • 如何准确可靠地模拟从外层空间高稀薄流到近地面连续流的航天器高超声速绕流环境与复杂流动变化机理是流体物理的前沿基础科学问题. 基于对Boltzmann方程碰撞积分的物理分析与可计算建模, 确立了可描述自由分子流到连续流区各流域不同马赫数复杂流动输运现象统一的Boltzmann模型速度分布函数方程, 发展了适于高、低不同马赫数绕流问题的离散速度坐标法和直接求解分子速度分布函数演化更新的气体动理论数值格式, 建立了模拟复杂飞行器跨流域高超声速飞行热环境绕流问题的气体动理论统一算法. 对稀薄流到连续流不同Knudsen数0.002 Kn 1.618、不同马赫数下可重复使用卫星体再入过程(11070 km)中高超声速绕流问题进行算法验证分析, 计算结果与典型文献的Monte Carlo直接模拟值及相关理论分析符合得较好. 研究揭示了飞行器跨流域不同高度高超声速复杂流动机理、绕流现象与气动力/热变化规律, 提出了一个通过数值求解介观Boltzmann模型方程, 可靠模拟高稀薄自由分子流到连续流跨流域高超声速气动力/热绕流特性统一算法.
    How to solve hypersonic aerothermodynamics and complex flow mechanism covering various flow regimes from high rarefied free-molecular flow of outer-layer space to continuum flow of near-ground is one of the frontier basic problems in the field of fluid physics. In this work, the unified Boltzmann model equation based on the molecular velocity distribution function is presented for describing complex hypersonic flow transport phenomena covering all flow regimes by physics analysis and model processing of the collision integral to the Boltzmann equation. The discrete velocity ordinate method is developed to simulate complex flows from low Mach numbers to hypersonic flight, and the gas-kinetic coupling-iteration numerical scheme is constructed directly to solve the evolution and updating of the molecular velocity distribution function by employing the unsteady time-splitting method and the NND finite-difference technique. Then, the gas-kinetic unified algorithm (GKUA) is presented to~simulate the three-dimensional hypersonic aerothermodynamics and flow problems around space vehicles covering various flow regimes from free-molecule to continuum. To verify the accuracy and reliability of the present GKUA and simulate gas thermodynamic transport phenomena covering various flow regimes, firstly, the two-dimensional supersonic flows around a circular cylinder are simulated in the continuum regime of Kn= 0.0001 and in the high rarefied regime of Kn= 0.3 through the comparison between the Navier-Stokes (N-S) solution and the direct simulation Monte Carlo (DSMC) result, respectively. It is indicated that the GKUA can exactly converge to the N-S solution in the continuum flow regime, and the computed results of the GKUA are consistent with the DSMC simulation with a small deviation of 0.45% in the high rarefied flow regime. Then, the three-dimensional complex hypersonic flows around reusable satellite shape are studied as one of the engineering applications of the GKUA with a wide range 0.002 Kn 1.618 of the free-stream Knudsen numbers and different Mach numbers during re-entering Earth atmosphere with the flying altitudes of 110-70~km. The computed results are found to be in high resolution of the flow fields and in good agreement in a deviation range of 0.27%-8.56% by comparison among the relevant reference data, DSMC and theoretical predictions. The complex flow mechanism, flow phenomena and changing laws of hypersonic aerothermodynamics are revealed for spacecraft re-entry into the atmosphere, and the effects of rarefied gas and wall temperature on the aerothermodynamics characteristics of re-entry satellite shape are compared and analysed with different Knudsen numbers and wall temperature ratios of Tw/T = 1.6, 10 and 15.6. It is validated that the non-dimensional heat flux coefficient in the rarefied transitional flow regime is higher than that of the continuum and near-continuum flow regimes, the high wall temperature results in the enlarging amplitude of temperature variation on the stagnation line and the serious effect on the heat flux of the stagnation point, and wall temperature becomes lower, the heat flux coefficient of wall surface becomes bigger, and the friction force and pressure coefficients decrease. The non-equilibrium level of flow velocity slip and temperature jump on the surface of space vehicle becomes severer, and the stronger heat transfer effect between the space vehicle and the gas flow is produced as the Mach number or Knudsen number of the free-stream flow increases. It can be realized from this study that the gas-kinetic unified algorithm directly solving the Boltzmann model velocity distribution function equation may provide an important and feasible way that complex hypersonic aerothermodynamic problems and flow mechanisms from high rarefied free-molecule to continuum flow regimes can be solved effectively and reliably.
      通信作者: 李志辉, zhli0097@x263.net
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB744100)、国家自然科学基金(批准号: 11325212, 91016027)和国防基础科研基金(批准号: 51313030104)资助的课题.
      Corresponding author: Li Zhi-Hui, zhli0097@x263.net
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB744100), the National Natural Science Foundation of China (Grant Nos. 11325212, 91016027), and the National Defense Basic Scientific Research Program of China (Grant No. 51313030104).
    [1]

    Tsien H S 1946 J. Aeronaut. Sci. 13 653

    [2]

    Chapmann S, Cowling T G 1970 The Mathematical Theory of Non-uniform Gases (3rd Ed.) (Cambridge: Cambridge University Press) p62

    [3]

    Bertin J J, Cummings R M 2003 Prog. Aerospace Sci. 39 511

    [4]

    Frantziskonis G, Muralidharan K 2009 J. Comput. Phys. 228 8085

    [5]

    D'Souza S N, Sarigul-Klijn N 2014 Prog. Aerospace Sci. 68 64

    [6]

    Bird G A 1963 Phys. Fluids 6 1518

    [7]

    Pham-Van Diep G, Erwin D, Muntz E P 1989 Science 245 624

    [8]

    Haas B L, Boyd L D 1993 Phys. Fluids A 5 478

    [9]

    Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (London: Oxford University Press) p195

    [10]

    Koppenwallner G, Legge H 1986 Progress in Astronautics and Aeronautics: Thermophysical Aspects of Reentry Flows. AIAA Paper 85-0998

    [11]

    Li Z H, Wu Z Y 1996 Acta Aerodynam. Sin. 14 230 (in Chinese) [李志辉, 吴振宇 1996 空气动力学学报 14 230]

    [12]

    Ivanov M S, Vashchenkov P, Kashkovsky A 2007 Numerical Investigation of the EXPERT Reentry Vehicle Aerothermodynamics along the Descent Trajectory AIAA 2007-4145

    [13]

    Li Z H, Fang M, Jiang X Y, Wu J L 2013 Sci. China: Phys. Mech. Astron. 56 404

    [14]

    Kostoff R N, Cummings R M 2013 Aerospace Sci. Technol. 26 216

    [15]

    Cercignani C 1988 The Boltzmann Equation and its Applications (Berlin: Springer Verlag) p192

    [16]

    Whitehead Jr A 1989 NASP Aerodynamics AIAA Paper 89-5013

    [17]

    Kirk B S, Stogner R H, Bauman P T, Oliver T A 2014 Computers Fluids 92 281

    [18]

    Wang C S (translated by Ying C T, Zhang C Z) 1994 The Kinetic Theory of a Gas (Beijing: Atom Energy Press) pp71-222 (in Chinese) [王承书 著 (应纯同, 张存镇 译) 1994气体运动论 论文选集 (北京: 原子能出版社) 第71222页]

    [19]

    Peng H W, Xu X S 1998 The Fundamentals of Theoretical Physics (The Series of Advanced Physics of Peking University) (Beijing: Peking University Press) pp143-255 (in Chinese) [彭恒武, 徐锡申 1998 理论物理基础, 北京大学物理学丛书(教材) (北京: 北京大学出版社) 第143255页]

    [20]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511

    [21]

    Holway Jr. L H 1966 Phys. Fluids 9 1658

    [22]

    Shakhov E M 1968 Fluid Dyn. 3 158

    [23]

    Abe T, Oguchi H 1977 Progress in Astronautics and Aeronautics (Vol. 51) (NewYork: AIAA) pp781-793

    [24]

    Pullin D I 1980 J. Comput. Phys. 34 231

    [25]

    Macrossan M N 1989 J. Comput. Phys. 80 204

    [26]

    Prendergast K H, Xu K 1993 J. Comput. Phys. 109 53

    [27]

    Xu K 2001 J. Comput. Phys. 171 289

    [28]

    Xu K, Li Z H 2004 J. Fluid Mech. 513 87

    [29]

    Frisch U, Hasslacher B, Pomeau Y 1986 Phys. Rev. Lett. 56 1505

    [30]

    Qian Y H, Succi S, Orszag S 1995 Annu. Rev. Compt. Phys. 3 195

    [31]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329

    [32]

    Ran Z 2009 Chin. Phys. B 18 2159

    [33]

    Zhong C W, Xie J F, Zhuo C S, Xiong S W, Yin D C 2009 Chin. Phys. B 18 4083

    [34]

    Chen F, Xu A G, Zhang G C 2011 Commun. Theor. Phys. 55 325

    [35]

    Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Yoshiyuki K 2012 Chin. Phys. B 21 124703

    [36]

    Chen L, He Y L, Kang Q J, Tao W Q 2013 J. Comput. Phys. 255 83

    [37]

    Xie W J, Teng P F 2014 Acta Phys. Sin. 63 164301 (in Chinese) [解文军, 腾鹏飞 2014 物理学报 63 164301]

    [38]

    Liu F F, Wei S S, Wei C Z, Ren X F 2014 Acta Phys. Sin. 63 194704 (in Chinese) [刘飞飞, 魏守水, 魏长智, 任晓飞 2014 物理学报 63 194704]

    [39]

    Vahid E, Esmaeil D, Amir M D-S 2014 Chin. Phys. B 23 084702

    [40]

    Yang J Y, Huang J C 1995 J. Comput. Phys. 120 323

    [41]

    Shakhov E M 1984 Proceedings of 14th International Symposium on Rarefied Gas Dynamics Tsukuba, Japan, 1984 pp137-148

    [42]

    Aoki K, Kanba K, Takata S 1997 Phys. Fluids. 9 1144

    [43]

    Mieussens L 2000 J. Comput. Phys. 162 429

    [44]

    Li Z H, Zhang H X 2000 Proc. of 22nd International Symposium on Rarefied Gas Dynamics Sydney, Australia, July 9-14, 2000 pp628-636

    [45]

    Li Z H 2001 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese) [李志辉 2001 博士学位论文(绵阳: 中国空气动力研究与发展中心)]

    [46]

    Li Z H, Zhang H X 2003 Int. J. Numer. Meth. Fluids 42 361

    [47]

    Li Z H, Zhang H X 2004 J. Comput. Phys. 193 708

    [48]

    Li Z H, Zhang H X 2005 Adv. Mech. 35 557 (in Chinese) [李志辉, 张涵信 2005力学进展 35 557]

    [49]

    Zhang H X, Shen M Y 2003 Computational Fluid Dynamics-Fundamentals and Applications of Finite Difference Methods (Beijing: National Defence Industry Press) p240 (in Chinese) [张涵信, 沈孟育 2003 计算流体力学-差分方法的原理和应用 (北京: 国防工业出版社) 第240页]

    [50]

    Li Z H, Zhang H X 2008 Chin. J. Comput. Phys. 25 65 (in Chinese) [李志辉, 张涵信 2008 计算物理 25 65]

    [51]

    Li Z H, Zhang H X 2010 Acta Aerodynam. Sin. 28 7 (in Chinese) [李志辉, 张涵信 2010 空气动力学学报 28 7]

    [52]

    Li Z H, Zhang H X, Fu S 2005 Sci. China: Phys. Mech. Astron. 48 496

    [53]

    Li Z H, Zhang H X 2009 J. Comput. Phys. 228 1116

    [54]

    Li Z H, Zhang H X 2007 Acta Mechan. Sin. 23 121

    [55]

    Li Z H, Peng A P, Zhang H X, Yang J Y 2015 Prog. Aerospace Sci. 74 81

    [56]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747

    [57]

    Chen S Z, Xu K, Lee C B, Cai Q D 2012 J. Comput. Phys. 231 6643

    [58]

    Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305

    [59]

    Bobylev A V, Rjasanow S 1999 Eur. J. Mech. B 18 869

    [60]

    Pareschi L, Russo G 2000 SIAM J. Numer. Anal. 37 1217

    [61]

    Wu L, White C, Scanlon T J, Reese J M, Zhang Y H 2013 J. Comput. Phys. 250 27

    [62]

    Jin S, Li Q 2013 Numerical Methods for Partial Differential Equations 29 1056

    [63]

    Wu L, Reese J M, Zhang Y H 2014 J. Fluid Mech. 746 53

    [64]

    Li Z H, Zhang H X 2008 Int. J. Comput. Fluid Dynam. 22 623

    [65]

    Zhang H X, Zhuang F G 1992 Adv. Appl. Mech. 29 193

    [66]

    Sharipov F 2003 Brazilian J. Phys. 33 398

  • [1]

    Tsien H S 1946 J. Aeronaut. Sci. 13 653

    [2]

    Chapmann S, Cowling T G 1970 The Mathematical Theory of Non-uniform Gases (3rd Ed.) (Cambridge: Cambridge University Press) p62

    [3]

    Bertin J J, Cummings R M 2003 Prog. Aerospace Sci. 39 511

    [4]

    Frantziskonis G, Muralidharan K 2009 J. Comput. Phys. 228 8085

    [5]

    D'Souza S N, Sarigul-Klijn N 2014 Prog. Aerospace Sci. 68 64

    [6]

    Bird G A 1963 Phys. Fluids 6 1518

    [7]

    Pham-Van Diep G, Erwin D, Muntz E P 1989 Science 245 624

    [8]

    Haas B L, Boyd L D 1993 Phys. Fluids A 5 478

    [9]

    Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (London: Oxford University Press) p195

    [10]

    Koppenwallner G, Legge H 1986 Progress in Astronautics and Aeronautics: Thermophysical Aspects of Reentry Flows. AIAA Paper 85-0998

    [11]

    Li Z H, Wu Z Y 1996 Acta Aerodynam. Sin. 14 230 (in Chinese) [李志辉, 吴振宇 1996 空气动力学学报 14 230]

    [12]

    Ivanov M S, Vashchenkov P, Kashkovsky A 2007 Numerical Investigation of the EXPERT Reentry Vehicle Aerothermodynamics along the Descent Trajectory AIAA 2007-4145

    [13]

    Li Z H, Fang M, Jiang X Y, Wu J L 2013 Sci. China: Phys. Mech. Astron. 56 404

    [14]

    Kostoff R N, Cummings R M 2013 Aerospace Sci. Technol. 26 216

    [15]

    Cercignani C 1988 The Boltzmann Equation and its Applications (Berlin: Springer Verlag) p192

    [16]

    Whitehead Jr A 1989 NASP Aerodynamics AIAA Paper 89-5013

    [17]

    Kirk B S, Stogner R H, Bauman P T, Oliver T A 2014 Computers Fluids 92 281

    [18]

    Wang C S (translated by Ying C T, Zhang C Z) 1994 The Kinetic Theory of a Gas (Beijing: Atom Energy Press) pp71-222 (in Chinese) [王承书 著 (应纯同, 张存镇 译) 1994气体运动论 论文选集 (北京: 原子能出版社) 第71222页]

    [19]

    Peng H W, Xu X S 1998 The Fundamentals of Theoretical Physics (The Series of Advanced Physics of Peking University) (Beijing: Peking University Press) pp143-255 (in Chinese) [彭恒武, 徐锡申 1998 理论物理基础, 北京大学物理学丛书(教材) (北京: 北京大学出版社) 第143255页]

    [20]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511

    [21]

    Holway Jr. L H 1966 Phys. Fluids 9 1658

    [22]

    Shakhov E M 1968 Fluid Dyn. 3 158

    [23]

    Abe T, Oguchi H 1977 Progress in Astronautics and Aeronautics (Vol. 51) (NewYork: AIAA) pp781-793

    [24]

    Pullin D I 1980 J. Comput. Phys. 34 231

    [25]

    Macrossan M N 1989 J. Comput. Phys. 80 204

    [26]

    Prendergast K H, Xu K 1993 J. Comput. Phys. 109 53

    [27]

    Xu K 2001 J. Comput. Phys. 171 289

    [28]

    Xu K, Li Z H 2004 J. Fluid Mech. 513 87

    [29]

    Frisch U, Hasslacher B, Pomeau Y 1986 Phys. Rev. Lett. 56 1505

    [30]

    Qian Y H, Succi S, Orszag S 1995 Annu. Rev. Compt. Phys. 3 195

    [31]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329

    [32]

    Ran Z 2009 Chin. Phys. B 18 2159

    [33]

    Zhong C W, Xie J F, Zhuo C S, Xiong S W, Yin D C 2009 Chin. Phys. B 18 4083

    [34]

    Chen F, Xu A G, Zhang G C 2011 Commun. Theor. Phys. 55 325

    [35]

    Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Yoshiyuki K 2012 Chin. Phys. B 21 124703

    [36]

    Chen L, He Y L, Kang Q J, Tao W Q 2013 J. Comput. Phys. 255 83

    [37]

    Xie W J, Teng P F 2014 Acta Phys. Sin. 63 164301 (in Chinese) [解文军, 腾鹏飞 2014 物理学报 63 164301]

    [38]

    Liu F F, Wei S S, Wei C Z, Ren X F 2014 Acta Phys. Sin. 63 194704 (in Chinese) [刘飞飞, 魏守水, 魏长智, 任晓飞 2014 物理学报 63 194704]

    [39]

    Vahid E, Esmaeil D, Amir M D-S 2014 Chin. Phys. B 23 084702

    [40]

    Yang J Y, Huang J C 1995 J. Comput. Phys. 120 323

    [41]

    Shakhov E M 1984 Proceedings of 14th International Symposium on Rarefied Gas Dynamics Tsukuba, Japan, 1984 pp137-148

    [42]

    Aoki K, Kanba K, Takata S 1997 Phys. Fluids. 9 1144

    [43]

    Mieussens L 2000 J. Comput. Phys. 162 429

    [44]

    Li Z H, Zhang H X 2000 Proc. of 22nd International Symposium on Rarefied Gas Dynamics Sydney, Australia, July 9-14, 2000 pp628-636

    [45]

    Li Z H 2001 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese) [李志辉 2001 博士学位论文(绵阳: 中国空气动力研究与发展中心)]

    [46]

    Li Z H, Zhang H X 2003 Int. J. Numer. Meth. Fluids 42 361

    [47]

    Li Z H, Zhang H X 2004 J. Comput. Phys. 193 708

    [48]

    Li Z H, Zhang H X 2005 Adv. Mech. 35 557 (in Chinese) [李志辉, 张涵信 2005力学进展 35 557]

    [49]

    Zhang H X, Shen M Y 2003 Computational Fluid Dynamics-Fundamentals and Applications of Finite Difference Methods (Beijing: National Defence Industry Press) p240 (in Chinese) [张涵信, 沈孟育 2003 计算流体力学-差分方法的原理和应用 (北京: 国防工业出版社) 第240页]

    [50]

    Li Z H, Zhang H X 2008 Chin. J. Comput. Phys. 25 65 (in Chinese) [李志辉, 张涵信 2008 计算物理 25 65]

    [51]

    Li Z H, Zhang H X 2010 Acta Aerodynam. Sin. 28 7 (in Chinese) [李志辉, 张涵信 2010 空气动力学学报 28 7]

    [52]

    Li Z H, Zhang H X, Fu S 2005 Sci. China: Phys. Mech. Astron. 48 496

    [53]

    Li Z H, Zhang H X 2009 J. Comput. Phys. 228 1116

    [54]

    Li Z H, Zhang H X 2007 Acta Mechan. Sin. 23 121

    [55]

    Li Z H, Peng A P, Zhang H X, Yang J Y 2015 Prog. Aerospace Sci. 74 81

    [56]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747

    [57]

    Chen S Z, Xu K, Lee C B, Cai Q D 2012 J. Comput. Phys. 231 6643

    [58]

    Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305

    [59]

    Bobylev A V, Rjasanow S 1999 Eur. J. Mech. B 18 869

    [60]

    Pareschi L, Russo G 2000 SIAM J. Numer. Anal. 37 1217

    [61]

    Wu L, White C, Scanlon T J, Reese J M, Zhang Y H 2013 J. Comput. Phys. 250 27

    [62]

    Jin S, Li Q 2013 Numerical Methods for Partial Differential Equations 29 1056

    [63]

    Wu L, Reese J M, Zhang Y H 2014 J. Fluid Mech. 746 53

    [64]

    Li Z H, Zhang H X 2008 Int. J. Comput. Fluid Dynam. 22 623

    [65]

    Zhang H X, Zhuang F G 1992 Adv. Appl. Mech. 29 193

    [66]

    Sharipov F 2003 Brazilian J. Phys. 33 398

  • [1] 孙佳坤, 林传栋, 苏咸利, 谭志城, 陈亚楼, 明平剑. 离散Boltzmann方程的求解: 基于有限体积法. 物理学报, 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [3] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用. 物理学报, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [4] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [5] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212345
    [6] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [7] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法. 物理学报, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [8] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报, 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [9] 周曜智, 李春, 李晨阳, 李清廉. 超声速横向气流中液体射流的轨迹预测与连续液柱模型. 物理学报, 2020, 69(23): 234702. doi: 10.7498/aps.69.20200903
    [10] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [11] 彭傲平, 李志辉, 吴俊林, 蒋新宇. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703. doi: 10.7498/aps.66.204703
    [12] 李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析. 物理学报, 2016, 65(6): 064701. doi: 10.7498/aps.65.064701
    [13] 吴里银, 王振国, 李清廉, 李春. 超声速气流中液体横向射流的非定常特性与振荡边界模型. 物理学报, 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [14] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [15] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [16] 孙健, 刘伟强. 高超声速飞行器前缘疏导式热防护结构的实验研究. 物理学报, 2014, 63(9): 094401. doi: 10.7498/aps.63.094401
    [17] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析. 物理学报, 2013, 62(7): 074401. doi: 10.7498/aps.62.074401
    [18] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [19] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究. 物理学报, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [20] 周义昌, 余超凡. 一维线性链的亚声速和超声速孤立子. 物理学报, 1992, 41(12): 2016-2023. doi: 10.7498/aps.41.2016
计量
  • 文章访问数:  6515
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-06-23
  • 刊出日期:  2015-11-05

/

返回文章
返回