搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散Boltzmann方程的求解: 基于有限体积法

孙佳坤 林传栋 苏咸利 谭志城 陈亚楼 明平剑

引用本文:
Citation:

离散Boltzmann方程的求解: 基于有限体积法

孙佳坤, 林传栋, 苏咸利, 谭志城, 陈亚楼, 明平剑

Solution of the discrete Boltzmann equation: Based on the finite volume method

Sun Jia-Kun, Lin Chuan-Dong, Su Xian-Li, Tan Zhi-Cheng, Chen Ya-Lou, Ming Ping-Jian
PDF
HTML
导出引用
  • 近十年来, 离散Boltzmann方法在复杂非平衡流体系统领域的应用取得了显著的进展, 这种方法已逐步成为描述和预测流体系统行为的重要手段. 该方法的控制方程是一套简单统一的离散Boltzmann方程, 其离散格式的选取对于数值模拟的计算精度和稳定性有着直接影响. 为了提高数值模拟的可靠性, 本文引入有限体积法用于求解离散Boltzmann方程. 有限体积法是一种常用的数值计算方法, 具有守恒性强、精度高等特点, 可用于有效处理高速可压缩流体的数值计算问题. 本文采用MUSCL格式进行重构, 并引入了通量限制器以提高数值计算的稳定性. 最后, 对基于有限体积的离散Boltzmann方法进行了验证, 数值算例包括冲击波、Lax激波管以及声波. 结果表明, 该方法能够准确刻画冲击波、稀疏波、声波, 以及物质界面的演化, 同时确保系统的质量、动量和能量守恒, 还可以准确测量流体系统的流体力学和热力学非平衡效应.
    Mesoscopic methods serve as a pivotal link between the macroscopic and microscopic scales, offering a potent solution to the challenge of balancing physical accuracy with computational efficiency. Over the past decade, significant progress has been made in the application of the discrete Boltzmann method (DBM), which is a mesoscopic method based on a fundamental equation of nonequilibrium statistical physics (i.e., the Boltzmann equation), in the field of nonequilibrium fluid systems. The DBM has gradually become an important tool for describing and predicting the behavior of complex fluid systems. The governing equations comprise a set of straightforward and unified discrete Boltzmann equations, and the choice of their discrete format significantly influences the computational accuracy and stability of numerical simulations. In a bid to bolster the reliability of these simulations, this paper utilizes the finite volume method as a solution for handling the discrete Boltzmann equations. The finite volume method stands out as a widely employed numerical computation technique, known for its robust conservation properties and high level of accuracy. It excels notably in tackling numerical computations associated with high-speed compressible fluids. For the finite volume method, the value of each control volume corresponds to a specific physical quantity, which makes the physical connotation clear and the derivation process intuitive. Moreover, through the adoption of suitable numerical formats, the finite volume method can effectively minimize numerical oscillations and exhibit strong numerical stability, thus ensuring the reliability of computational results. Particularly, the MUSCL format where a flux limiter is introduced to improve the numerical robustness is adopted for the reconstruction in this paper. Ultimately, the DBM utilizing the finite volume method is rigorously validated to assess its proficiency in addressing flow issues characterized by pronounced discontinuities. The numerical experiments encompass scenarios involving shock waves, Lax shock tubes, and acoustic waves. The results demonstrate the method's precise depiction of shock wave evolution, rarefaction waves, acoustic phenomena, and material interfaces. Furthermore, it ensures the conservation of mass, momentum, and energy within the system, as well as accurately measures the hydrodynamic and thermodynamic nonequilibrium effects of the fluid system. Compared with the finite difference method, the finite volume method is also more convenient and flexible in dealing with boundary conditions of different geometries, and can be adapted to a variety of systems with complex boundary conditions. Consequently, the finite volume method further broadens the scope of DBM in practical applications.
      通信作者: 林传栋, linchd3@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51806116)、广东省基础与应用基础研究基金(批准号: 2022A1515012116, 2024A1515010927)和国家留学基金管理委员会(批准号: 202306380288)资助的课题.
      Corresponding author: Lin Chuan-Dong, linchd3@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51806116), the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2022A1515012116, 2024A1515010927), and the China Scholarship Council (Grant No. 202306380288).
    [1]

    阎超 2006 计算流体力学方法及应用 (北京: 北京航空航天大学出版社) 第1—14页

    Yan C 2006 Computational Fluid Dynamics Methods and Applications (Beijing: Beihang University Press) pp1–14

    [2]

    Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582Google Scholar

    [3]

    Leach A R 2001 Molecular Modelling: Principles and Applications (London: Pearson education) pp7-53

    [4]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第1—12页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp1–12

    [5]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第1—7页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applicatuons (Beijing: Science Press) pp1–7

    [6]

    张涵信, 沈孟育 2003 计算流体力学: 差分方法的原理和应用 (北京: 国防工业出版社) 第1—230页

    Zhang H X, Shen M Y 2003 Compatutional Fluid Dynamics: Fundamentals and Applications of Finite Difference Methods (Beijing: National Defense Industry Press) pp1–230

    [7]

    Darwish M, Moukalled F 2016 The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM and Matlab (Berlin: Springer) pp103–207

    [8]

    章本照, 印建安, 张宏基 2003 流体力学数值方法 (北京: 机械工业出版社) 第1—53页

    Zhang B Z, Yin J A, Zhang H J 2003 Numerical Methods in Fluid Dynamics (Beijing: China Machine Press) pp1–53

    [9]

    许爱国, 张玉东 2022 复杂介质动理学 (北京: 科学出版社) 第1—112页

    Xu A G, Zhang Y D 2022 Complex Media Kinetics (Beijing: Science Press) pp1–112

    [10]

    Lin C D, Xu A G, Zhang G C, Li Y, Succi S 2014 Phys. Rev. E 89 013307Google Scholar

    [11]

    Zhang Y D, Xu A G, Zhang G C, Chen Z H, Wang P 2019 Comput. Phys. Commun. 238 50Google Scholar

    [12]

    Ji Y, Lin C D, Luo K H 2021 AIP Adv. 11 045217Google Scholar

    [13]

    林传栋 2022 空气动力学学报 40 98Google Scholar

    Lin C D 2022 Acta Aerodyn. Sin. 40 98Google Scholar

    [14]

    Lin C D, Sun X P, Su X L, Lai H L, Fang X 2023 Chin. Phys. B 32 110503Google Scholar

    [15]

    Sun G L, Gan Y B, Xu A G, Shi Q F 2023 arXiv: 2311.06546 [physics.flu-dyn]

    [16]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511Google Scholar

    [17]

    Lin C D, Luo K H 2019 Phys. Rev. E 99 012142Google Scholar

    [18]

    Van Leer B 1979 J. Comput. Phys. 32 101Google Scholar

    [19]

    Gottlieb S, Shu C W 1998 Math. Comput. 67 73Google Scholar

    [20]

    Lin C D, Luo K H, Xu A G, Gan Y B, Lai H L 2021 Phys. Rev. E 103 013305Google Scholar

  • 图 1  离散速度(a)与控制单元的示意图(b)

    Fig. 1.  Sketches of discrete velocities (a) and control volumes (b).

    图 2  网格无关性验证 (a)不同网格数下冲击波波阵面附近的压强分布; (b)不同空间步长下的相对误差

    Fig. 2.  Grid-independence validation: (a) Pressure distribution in the vicinity of the shock wave for different grid numbers; (b) relative errors at different spatial steps.

    图 3  冲击波周围的物理量, t = 0.375  (a) 密度; (b) 水平速度; (c) 温度; (d) 压强

    Fig. 3.  Physical quantities around the shock wave, t = 0.375: (a) Density; (b) horizontal velocity; (c) temperature; (d) pressure.

    图 4  冲击波周围的非平衡量, t =0.375

    Fig. 4.  Nonequilibrium quantities around the shock wave, t =0.375.

    图 5  Lax激波管中的物理量, t = 0.15 (a) 密度; (b) 水平速度; (c) 温度; (d) 压强

    Fig. 5.  Physical quantities in the Lax shock tube, t = 0.15: (a) Density; (b) horizontal velocity; (c) temperature; (d) pressure.

    图 6  在声波传播过程中不同时刻的压强分布图, $\gamma = 1.4,\;T=1.0 $, t = 0, 0.050, 0.125, 0.150, 0.175和0.200

    Fig. 6.  Pressure contours in the evolution of a sound wave at time instants t = 0, 0.050, 0.125, 0.150, 0.175, and 0.200, respectively, $\gamma = 1.4,\;T=1.0 $.

    图 7  质量、动量和能量的守恒性验证: 正方形、菱形、三角形和圆形分别表示平均密度、x方向平均动量、y方向平均动量和平均能量. 实线代表对应的精确解

    Fig. 7.  Verification of the conservation of mass, momentum and energy. Squares, diamonds, triangles and circles represent the average values of density, momentum in the x direction, momentum in the y direction and energy, respectively. The solid lines denotes the corresponding exact solutions.

    图 8  声波的传播 (a)$\gamma = 1.4 $, 不同温度; (b)$ T = 1.0 $, 不同比热比

    Fig. 8.  Propagation of the sound wave: (a) $ \gamma = 1.4 $ with various specific heat ratios; (b) $ T = 1.0 $ with various temperatures.

  • [1]

    阎超 2006 计算流体力学方法及应用 (北京: 北京航空航天大学出版社) 第1—14页

    Yan C 2006 Computational Fluid Dynamics Methods and Applications (Beijing: Beihang University Press) pp1–14

    [2]

    Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582Google Scholar

    [3]

    Leach A R 2001 Molecular Modelling: Principles and Applications (London: Pearson education) pp7-53

    [4]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第1—12页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp1–12

    [5]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第1—7页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applicatuons (Beijing: Science Press) pp1–7

    [6]

    张涵信, 沈孟育 2003 计算流体力学: 差分方法的原理和应用 (北京: 国防工业出版社) 第1—230页

    Zhang H X, Shen M Y 2003 Compatutional Fluid Dynamics: Fundamentals and Applications of Finite Difference Methods (Beijing: National Defense Industry Press) pp1–230

    [7]

    Darwish M, Moukalled F 2016 The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM and Matlab (Berlin: Springer) pp103–207

    [8]

    章本照, 印建安, 张宏基 2003 流体力学数值方法 (北京: 机械工业出版社) 第1—53页

    Zhang B Z, Yin J A, Zhang H J 2003 Numerical Methods in Fluid Dynamics (Beijing: China Machine Press) pp1–53

    [9]

    许爱国, 张玉东 2022 复杂介质动理学 (北京: 科学出版社) 第1—112页

    Xu A G, Zhang Y D 2022 Complex Media Kinetics (Beijing: Science Press) pp1–112

    [10]

    Lin C D, Xu A G, Zhang G C, Li Y, Succi S 2014 Phys. Rev. E 89 013307Google Scholar

    [11]

    Zhang Y D, Xu A G, Zhang G C, Chen Z H, Wang P 2019 Comput. Phys. Commun. 238 50Google Scholar

    [12]

    Ji Y, Lin C D, Luo K H 2021 AIP Adv. 11 045217Google Scholar

    [13]

    林传栋 2022 空气动力学学报 40 98Google Scholar

    Lin C D 2022 Acta Aerodyn. Sin. 40 98Google Scholar

    [14]

    Lin C D, Sun X P, Su X L, Lai H L, Fang X 2023 Chin. Phys. B 32 110503Google Scholar

    [15]

    Sun G L, Gan Y B, Xu A G, Shi Q F 2023 arXiv: 2311.06546 [physics.flu-dyn]

    [16]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511Google Scholar

    [17]

    Lin C D, Luo K H 2019 Phys. Rev. E 99 012142Google Scholar

    [18]

    Van Leer B 1979 J. Comput. Phys. 32 101Google Scholar

    [19]

    Gottlieb S, Shu C W 1998 Math. Comput. 67 73Google Scholar

    [20]

    Lin C D, Luo K H, Xu A G, Gan Y B, Lai H L 2021 Phys. Rev. E 103 013305Google Scholar

  • [1] 高效伟, 丁金兴, 刘华雩. 有限线法及其在流固域间耦合传热中的应用. 物理学报, 2022, 71(19): 190201. doi: 10.7498/aps.71.20220833
    [2] 刘博, 邢朴, 丁松, 谢明军, 冯林, 时晓天. 一种新的可计算可压缩流动的预处理方法. 物理学报, 2022, 71(12): 124701. doi: 10.7498/aps.71.20220102
    [3] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法. 物理学报, 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [4] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [5] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究. 物理学报, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [6] 李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟. 物理学报, 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [7] 李强, 李五明. 带嵌件型腔内熔接过程的数值模拟研究. 物理学报, 2016, 65(6): 064601. doi: 10.7498/aps.65.064601
    [8] 陈大伟, 王裴, 蔚喜军, 孙海权, 马东军. 稠密可压缩气粒两相流动中的等熵声速计算建模及物理规律. 物理学报, 2016, 65(9): 094702. doi: 10.7498/aps.65.094702
    [9] 王浩森, 杨守文, 白彦, 陈涛, 汪宏年. 非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法. 物理学报, 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [10] 张琪, 张然, 宋海明. 美式回望期权定价问题的有限体积法. 物理学报, 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [11] 许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展. 物理学报, 2015, 64(18): 184701. doi: 10.7498/aps.64.184701
    [12] 甘才俊, 李烺, 马汉东, 熊红亮. 可压缩混合层光学传输效应理论分析与实验研究. 物理学报, 2014, 63(5): 054703. doi: 10.7498/aps.63.054703
    [13] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应. 物理学报, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [14] 姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究. 物理学报, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [15] 甘才俊, 李烺, 马汉东, 熊红亮. 可压缩混合层流场光学效应分析与实验研究. 物理学报, 2013, 62(18): 184701. doi: 10.7498/aps.62.184701
    [16] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟. 物理学报, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [17] 杨斌鑫, 欧阳洁, 栗雪娟. 复杂型腔充模中纤维取向的动态模拟. 物理学报, 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
    [18] 宁方立, 董梁, 张文治, 王康. 谐振管内非线性驻波的有限体积数值算法. 物理学报, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [19] 郑曙东, 李博文, 李冀光, 董晨钟, 袁文渊. 原子核的有限体积效应对高离化态离子能级和波函数的影响. 物理学报, 2009, 58(3): 1556-1562. doi: 10.7498/aps.58.1556
    [20] 俞慧丹, 赵凯华. 模拟可压缩流体的格子Boltzmann模型. 物理学报, 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
计量
  • 文章访问数:  1559
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-03-29
  • 上网日期:  2024-04-11
  • 刊出日期:  2024-06-05

/

返回文章
返回