搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法

王浩森 杨守文 白彦 陈涛 汪宏年

引用本文:
Citation:

非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法

王浩森, 杨守文, 白彦, 陈涛, 汪宏年

Three-dimensional finite volume simulation of the response of azimuth electromagnetic wave resistivity while drilling in inhomogeneous anisotropic formation

Wang Hao-Sen, Yang Shou-Wen, Bai Yan, Chen Tao, Wang Hong-Nian
PDF
导出引用
  • 方位随钻电磁测井是一种能够实时探测地层边界、实现地质导向与井眼成像的新型测井技术. 本文根据方位随钻电磁测井仪器的典型线圈系结构, 首先引入柱坐标系下非均质完全各向异性地层中电流源并矢Green函数, 并利用电磁场叠加原理给出倾斜发射线圈激发的电场以及倾斜接收线圈上感应电动势的计算公式; 然后应用电流源电场并矢Green函数的混合势克服非均质地层中电磁数值模拟的低感应数问题, 通过 和z方向上Lebedev网格设法降低网格节点个数, 并且利用标准化算法确定柱坐标系下非均质单元上的等效电导率. 在此基础上, 用三维有限体积法建立柱坐标系电场混合势的离散方法, 得到一个交错网格上电场矢势和标势大型代数方程, 并用不完全LU分解以及稳定双共轭梯度法确定数值解. 最后, 通过数据模拟结果对算法的有效性进行检验, 并考察钻铤、线圈倾斜角度以及地层各向异性等参数对仪器响应的影响. 数值结果表明: 在柱坐标系下用三维有限体积法的数值模拟算法处理非均质各向异性层中方位随钻电磁测井响应可以得到很好的结果. 钻铤、电导率各向异性、层边界均对方位随钻电磁波测井响应产生较大的影响; 在电阻率较大的地层, 幅度比和相位差响应越小; 发射线圈和接收线圈同时倾斜时, 幅度比和相位差响应受地层的影响更灵敏.
    The azimuth electromagnetic wave resistivity while drilling is a new type of well logging technique. It can real-time detect the formation boundary, realize geosteering and borehole imaging in order to keep the tool always drilling in the some meaning reservoir. For effectively optimizing tool parameters, proper explanation and evaluation of the data obtained by azimuth electromagnetic wave resistivity while drilling, the efficient numerical simulation algorithm is required. In this paper, we use the finite volume algorithm in the cylindrical coordinate to establish the corresponding numerical method so that we can effectively simulate the response of the tool in various complex environments and investigate the influences of the change in formation and tool parameters on the tool response. Therefore, according to the typical coil architecture of the instrument of azimuth electromagnetic wave resistivity while drilling, we first introduce the electrical and magnetic dyadic Green's functions in inhomogeneous anisotropic formation by the electrical current source in the cylindrical coordinate. Through superposition principle, we derive the integral formula to compute the electric field intensity excited by tilted transmitter coils and the induction electrical potential on tilted receiving coils both mounded on the drill collar. Then, we use the coupled electrical potentials of the dyadic Green's functions to overcome the low induction number problem during modeling the electrical fields in inhomogeneous anisotropic formation. Furthermore, we use Lebedev grid in both and z directions to reduce the number of grid nodes, and the standard method to compute the equivalent conductivity in heterogeneous units for enhancing the discrete precision. On the basis, by the three-dimensional finite volume method, we discrete the equations about the coupled electrical potentials in the cylindrical coordinates and obtain the large sparse algebraic equation sets about the coupled electrical potentials field on the Lebedev grid. A combination of incomplete LU decomposition with the bi-conjugate gradient stabilization is used to solve the numerical solution. Finally, we validate the algorithm by comparing the numerical results obtained by two different methods, study the effects of the drill collar, anisotropy, the tilted angles of both coil, and borehole on the instrument response in inhomogeneous anisotropic formation. The numerical results show that the tool response obtained by the three-dimensional finite volume algorithm in the cylindrical coordinate system in anisotropic formation accord with that those obtained by other algorithms. The drill collar, inhomogeneous anisotropic n the formation will lead to both the smaller amplitude ratio and the smaller phase difference. In addition, when the coils of both transmitting and receiving coils are tilted, the amplitude ratio and phase difference of the tool are more sensitive to the change in formation parameter.
      通信作者: 汪宏年, wanghn@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41574110)和国家科技重大专项(批准号: 2011ZX0520-001)资助的课题.
      Corresponding author: Wang Hong-Nian, wanghn@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41574110) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX0520-001).
    [1]

    Li Q M, Omeragic D, Chou L, Yang L, Duong K, Smits J, Yang J 2005 SPWLA 46th Annual Logging Symposium New Orleans, USA, June 26-29, 2005 SPWLA-2005-UU

    [2]

    Seydoux J, Legendre E, Mirto E, Dupuis C, Denichou J M, Bennett N, Kutiev G, Kuchenbecker M, Morriss C, Schlumberger L Y 2014 SPWLA 55th Annual Logging Symposium Abu Dhabi, UAE, May 18-22, 2014 SPWLA-2014-LLLL

    [3]

    Neville T J, Weller G, Faivre O, Sun H 2007 SPE Reserv. Eval. Eng. 10 132

    [4]

    Coope D, Shen L C, Huang F S 1984 The Log Analyst 25 35

    [5]

    Zhou Q, Hilliker D J 1991 Geophysics 56 1738

    [6]

    Gianzero S, Merchant G A, Haugland M 1994 SPWLA 35th Annual Logging Symposium Tulsa, USA, June 19-25, 1994 SPWLA-1994-MM

    [7]

    Kennedy W D, Corley B D 2009 SPWLA 50th Annual Logging Symposium Houston, USA, June 21-24, 2009 SPWLA-2009-ZZ

    [8]

    Everett M E 2012 Surv. Geophys. 33 29

    [9]

    Wang H N, Tao H G, Yao J J, Chen G 2008 IEEE Trans. Geosci. Remote. 46 1525

    [10]

    Wang H N 2011 IEEE Trans. Geosci. Remote. 49 4483

    [11]

    Wang H N, Hu P, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 717 (in Chinese) [汪宏年, 胡平, 陶宏根, 杨守文 2012 地球物理学报 55 717]

    [12]

    Zhou J M, Wang H N, Yao J J, Yang S W, Ma Y Z 2012 Acta Phys. Sin. 61 089101 (in Chinese) [周建美, 汪宏年, 姚敬金, 杨守文, 马寅芝 2012 物理学报 61 089101]

    [13]

    Yang S W, Wang J X, Zhou J M, Zhu T Z, Wang H N 2014 IEEE Trans. Geosci. Remote. 52 6911

    [14]

    Zhou J M, Wang J X, Shang Q L, Wang H N, Yin C C 2014 J. Geophys. Eng. 11 02500301

    [15]

    Wang J X, Wang H N, Zhou J M, Yang S W, Liu X J, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese) [汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春 2013 物理学报 62 224101]

    [16]

    Wang H N, So P M, Yang S, Hoefer W J R, Du H L 2008 IEEE Trans. Geosci. Remote. 46 1134

    [17]

    Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote. 50 3383

    [18]

    Li F Y, Wen H, Fang Z Y 2013 Chin. Phys. B 22 120402

    [19]

    Shen J S 2003 Chin. J. Geophys. 46 281 (in Chinese) [沈金松 2003 地球物理学报 46 281]

    [20]

    Li J H 2014 Sci. China: Ser. D 44 928 (in Chinese) [李剑浩 2014 中国科学: 地球科学 44 928]

    [21]

    Liu N Z, Wang Z, Liu C 2015 Chin. J. Geophys. 58 1767 (in Chinese) [刘乃震, 王忠,刘策 2015 地球物理学报 58 1767]

    [22]

    Horstmann M, Sun K, Berger P, Olsen P A, Omeragic D, Crary S 2015 SPWLA 56th Annual Logging Symposium Long Beach, USA, July 18-22, 2015 SPWLA-2015-LLLL

    [23]

    Wang H N, Yang S D, Wang Y 1999 Oil Geophys. Prospect. 34 649 (in Chinese) [汪宏年, 杨善德, 王艳 1999 石油地球物理勘探 34 649]

    [24]

    Yao D H, Wang H N, Yang S W, Yang H L 2010 Chin. J. Geophys. 53 3026 (in Chinese) [姚东华, 汪宏年, 杨守文, 杨海亮 2010 地球物理学报 53 3026]

    [25]

    Xu Z F, Wu X P 2010 Chin. J. Geophys. 53 1931 (in Chinese) [徐志锋, 吴小平 2010 地球物理学报 53 1931]

    [26]

    Hue Y K, Teixeira F L 2006 IEEE Trans. Antenn. Propag. 54 1058

    [27]

    Zhang L, Chen H, Wang X M 2012 Chin. J. Geophys. 55 3493 (in Chinese) [张雷, 陈浩, 王秀明 2012 地球物理学报 55 3493]

    [28]

    Li H, Liu D J, Ma Z H, Gao X S 2012 Procedia Eng. 29 2122

    [29]

    Liu G S, Teixeira F L, Zhang G J 2012 IEEE Trans. Antenn. Propag. 60 318

    [30]

    Haber E, Asch U M 2001 Siam. J. Sci. Comput. 22 1943

    [31]

    Novo M S, Silva L C, Teixeira F L 2010 IEEE Trans. Geosci. Remote. 48 1151

    [32]

    Zhou J M, Zhang Y, Wang H N, Yang S W, Yin C C 2014 Acta Phys. Sin. 63 159101 (in Chinese) [周建美, 张烨, 汪宏年, 杨守文, 殷长春2014物理学报 63 159101]

    [33]

    Zhang Y, Wang H N, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 2141 (in Chinese) [张烨, 汪宏年, 陶宏根, 杨守文 2012 地球物理学报 55 2141]

    [34]

    Davydycheva S, Druskin V, Habashy T 2003 Geophysics 68 1525

    [35]

    Moskow S, Druskin V, Habashy T, Lee P, Davydycheva S 1999 Siam. J. Numer. Anal. 36 442

  • [1]

    Li Q M, Omeragic D, Chou L, Yang L, Duong K, Smits J, Yang J 2005 SPWLA 46th Annual Logging Symposium New Orleans, USA, June 26-29, 2005 SPWLA-2005-UU

    [2]

    Seydoux J, Legendre E, Mirto E, Dupuis C, Denichou J M, Bennett N, Kutiev G, Kuchenbecker M, Morriss C, Schlumberger L Y 2014 SPWLA 55th Annual Logging Symposium Abu Dhabi, UAE, May 18-22, 2014 SPWLA-2014-LLLL

    [3]

    Neville T J, Weller G, Faivre O, Sun H 2007 SPE Reserv. Eval. Eng. 10 132

    [4]

    Coope D, Shen L C, Huang F S 1984 The Log Analyst 25 35

    [5]

    Zhou Q, Hilliker D J 1991 Geophysics 56 1738

    [6]

    Gianzero S, Merchant G A, Haugland M 1994 SPWLA 35th Annual Logging Symposium Tulsa, USA, June 19-25, 1994 SPWLA-1994-MM

    [7]

    Kennedy W D, Corley B D 2009 SPWLA 50th Annual Logging Symposium Houston, USA, June 21-24, 2009 SPWLA-2009-ZZ

    [8]

    Everett M E 2012 Surv. Geophys. 33 29

    [9]

    Wang H N, Tao H G, Yao J J, Chen G 2008 IEEE Trans. Geosci. Remote. 46 1525

    [10]

    Wang H N 2011 IEEE Trans. Geosci. Remote. 49 4483

    [11]

    Wang H N, Hu P, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 717 (in Chinese) [汪宏年, 胡平, 陶宏根, 杨守文 2012 地球物理学报 55 717]

    [12]

    Zhou J M, Wang H N, Yao J J, Yang S W, Ma Y Z 2012 Acta Phys. Sin. 61 089101 (in Chinese) [周建美, 汪宏年, 姚敬金, 杨守文, 马寅芝 2012 物理学报 61 089101]

    [13]

    Yang S W, Wang J X, Zhou J M, Zhu T Z, Wang H N 2014 IEEE Trans. Geosci. Remote. 52 6911

    [14]

    Zhou J M, Wang J X, Shang Q L, Wang H N, Yin C C 2014 J. Geophys. Eng. 11 02500301

    [15]

    Wang J X, Wang H N, Zhou J M, Yang S W, Liu X J, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese) [汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春 2013 物理学报 62 224101]

    [16]

    Wang H N, So P M, Yang S, Hoefer W J R, Du H L 2008 IEEE Trans. Geosci. Remote. 46 1134

    [17]

    Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote. 50 3383

    [18]

    Li F Y, Wen H, Fang Z Y 2013 Chin. Phys. B 22 120402

    [19]

    Shen J S 2003 Chin. J. Geophys. 46 281 (in Chinese) [沈金松 2003 地球物理学报 46 281]

    [20]

    Li J H 2014 Sci. China: Ser. D 44 928 (in Chinese) [李剑浩 2014 中国科学: 地球科学 44 928]

    [21]

    Liu N Z, Wang Z, Liu C 2015 Chin. J. Geophys. 58 1767 (in Chinese) [刘乃震, 王忠,刘策 2015 地球物理学报 58 1767]

    [22]

    Horstmann M, Sun K, Berger P, Olsen P A, Omeragic D, Crary S 2015 SPWLA 56th Annual Logging Symposium Long Beach, USA, July 18-22, 2015 SPWLA-2015-LLLL

    [23]

    Wang H N, Yang S D, Wang Y 1999 Oil Geophys. Prospect. 34 649 (in Chinese) [汪宏年, 杨善德, 王艳 1999 石油地球物理勘探 34 649]

    [24]

    Yao D H, Wang H N, Yang S W, Yang H L 2010 Chin. J. Geophys. 53 3026 (in Chinese) [姚东华, 汪宏年, 杨守文, 杨海亮 2010 地球物理学报 53 3026]

    [25]

    Xu Z F, Wu X P 2010 Chin. J. Geophys. 53 1931 (in Chinese) [徐志锋, 吴小平 2010 地球物理学报 53 1931]

    [26]

    Hue Y K, Teixeira F L 2006 IEEE Trans. Antenn. Propag. 54 1058

    [27]

    Zhang L, Chen H, Wang X M 2012 Chin. J. Geophys. 55 3493 (in Chinese) [张雷, 陈浩, 王秀明 2012 地球物理学报 55 3493]

    [28]

    Li H, Liu D J, Ma Z H, Gao X S 2012 Procedia Eng. 29 2122

    [29]

    Liu G S, Teixeira F L, Zhang G J 2012 IEEE Trans. Antenn. Propag. 60 318

    [30]

    Haber E, Asch U M 2001 Siam. J. Sci. Comput. 22 1943

    [31]

    Novo M S, Silva L C, Teixeira F L 2010 IEEE Trans. Geosci. Remote. 48 1151

    [32]

    Zhou J M, Zhang Y, Wang H N, Yang S W, Yin C C 2014 Acta Phys. Sin. 63 159101 (in Chinese) [周建美, 张烨, 汪宏年, 杨守文, 殷长春2014物理学报 63 159101]

    [33]

    Zhang Y, Wang H N, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 2141 (in Chinese) [张烨, 汪宏年, 陶宏根, 杨守文 2012 地球物理学报 55 2141]

    [34]

    Davydycheva S, Druskin V, Habashy T 2003 Geophysics 68 1525

    [35]

    Moskow S, Druskin V, Habashy T, Lee P, Davydycheva S 1999 Siam. J. Numer. Anal. 36 442

  • [1] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法. 物理学报, 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [2] 李强, 李五明. 带嵌件型腔内熔接过程的数值模拟研究. 物理学报, 2016, 65(6): 064601. doi: 10.7498/aps.65.064601
    [3] 张琪, 张然, 宋海明. 美式回望期权定价问题的有限体积法. 物理学报, 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [4] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [5] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应. 物理学报, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [6] 朱柯斌, 聂在平, 孙向阳. 基于电缆-无线耦合的随钻测井信号传输新方法及其数值模拟研究. 物理学报, 2013, 62(6): 060202. doi: 10.7498/aps.62.060202
    [7] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法. 物理学报, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [8] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟. 物理学报, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [9] 杨斌鑫, 欧阳洁, 栗雪娟. 复杂型腔充模中纤维取向的动态模拟. 物理学报, 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
    [10] 宁方立, 董梁, 张文治, 王康. 谐振管内非线性驻波的有限体积数值算法 . 物理学报, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [11] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [12] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究. 物理学报, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [13] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析. 物理学报, 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [14] 陈桂波, 汪宏年, 姚敬金, 韩子夜. 各向异性海底地层海洋可控源电磁响应三维积分方程法数值模拟. 物理学报, 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [15] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [16] 杨利霞, 葛德彪. 磁各向异性色散介质散射的Padé时域有限差分方法分析. 物理学报, 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
    [17] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [18] 贺智勇, 李祖玉, 靳根明, 段利敏, 戴光曦, 吴和宇, 张保国, 文万信, 漆玉金, 罗清政. 核核碰撞中不稳定轻核的方位角各向异性发射. 物理学报, 1996, 45(9): 1438-1443. doi: 10.7498/aps.45.1438
    [19] 熊湘沅, 何开元. Fe-Cu-Nb-Si—B纳米晶合金的有效磁各向异性随退火温度的变化. 物理学报, 1995, 44(8): 1286-1290. doi: 10.7498/aps.44.1286
    [20] 史杭, 蔡建华. 有限超晶格中的电磁耦子. 物理学报, 1988, 37(4): 683-687. doi: 10.7498/aps.37.683
计量
  • 文章访问数:  3246
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-13
  • 修回日期:  2016-01-17
  • 刊出日期:  2016-04-05

非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法

  • 1. 吉林大学物理学院, 长春 130012;
  • 2. 中国石油集团测井有限公司, 西安 710077
  • 通信作者: 汪宏年, wanghn@jlu.edu.cn
    基金项目: 国家自然科学基金(批准号: 41574110)和国家科技重大专项(批准号: 2011ZX0520-001)资助的课题.

摘要: 方位随钻电磁测井是一种能够实时探测地层边界、实现地质导向与井眼成像的新型测井技术. 本文根据方位随钻电磁测井仪器的典型线圈系结构, 首先引入柱坐标系下非均质完全各向异性地层中电流源并矢Green函数, 并利用电磁场叠加原理给出倾斜发射线圈激发的电场以及倾斜接收线圈上感应电动势的计算公式; 然后应用电流源电场并矢Green函数的混合势克服非均质地层中电磁数值模拟的低感应数问题, 通过 和z方向上Lebedev网格设法降低网格节点个数, 并且利用标准化算法确定柱坐标系下非均质单元上的等效电导率. 在此基础上, 用三维有限体积法建立柱坐标系电场混合势的离散方法, 得到一个交错网格上电场矢势和标势大型代数方程, 并用不完全LU分解以及稳定双共轭梯度法确定数值解. 最后, 通过数据模拟结果对算法的有效性进行检验, 并考察钻铤、线圈倾斜角度以及地层各向异性等参数对仪器响应的影响. 数值结果表明: 在柱坐标系下用三维有限体积法的数值模拟算法处理非均质各向异性层中方位随钻电磁测井响应可以得到很好的结果. 钻铤、电导率各向异性、层边界均对方位随钻电磁波测井响应产生较大的影响; 在电阻率较大的地层, 幅度比和相位差响应越小; 发射线圈和接收线圈同时倾斜时, 幅度比和相位差响应受地层的影响更灵敏.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回