搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应

周建美 张烨 汪宏年 杨守文 殷长春

引用本文:
Citation:

耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应

周建美, 张烨, 汪宏年, 杨守文, 殷长春

Efficient simulation of three-dimensional marine controlled-source electromagnetic response in anisotropic formation by means of coupled potential finite volume method

Zhou Jian-Mei, Zhang Ye, Wang Hong-Nian, Yang Shou-Wen, Yin Chang-Chun
PDF
导出引用
  • 本文基于电场矢势与标势分解的耦合势有限体积法研究建立一套各向异性地层中海洋可控源电磁法的三维响应的高效数值模拟技术. 首先引入电场的矢势和标势,将电场分解为无散场和无旋场之和,Maxwell方程转换为关于矢势与标势的混合Helmholtz方程,克服低感应数问题. 在此基础上,借助Yee氏交错网格和有限体积法以及非均质单元中等效电导率公式,建立混合Helmholtz方程的离散方程. 并采用直接法求解器PARDISO求解离散方程,有效保证在大的求解空间中仍然能够获得电磁场稳定可靠的数值解. 此外,在数值模拟中利用差异场技术,克服源的奇异性问题,尽可能提高近场的计算精度. 与解析解的对比证明了该算法的有效性. 数值模拟结果表明,海洋可控源电磁法沿测线方向的电场,对油气藏的纵向电阻率敏感,对横向电阻率不敏感;对油气藏上方的覆盖层的纵向电阻率和横向电阻率都敏感.
    A coupled potential finite volume method for simulation of three-dimensional marine controlled-source electromagnetic (CSEM) response in anisotropic formation is developed. To circumvent ill-conditioning and convergence problems, Maxwell's equations are reformulated into coupled scalar-vector potentials with Coulomb gauge and its complement by applying a Helmholtz decomposition to the electric field. Yee's staggered girds, finite volume averaging and interpolation techniques are used to make the Helmholtz equations discrete. The resulting sparse and complex linear system in large-scale models is solved by a direct solver PARDISO. In order to improve the accuracy of the near field results without significantly reducing the computational efficiency, a method using difference fields is proposed to reduce the source singularity effect of anisotropic formation. The anisotropic modeling examples show that marine CSEM response is predominantly sensitive to reservoir vertical resistivity, not to reservoir horizontal resistivity, provided that the reservoir are thin and high-resistive; but the marine CSEM response is sensitive to both horizontal and vertical resistivity of the overburden on top of the reservoir.
    • 基金项目: 国家高技术研究发展计划(批准号:2012AA09A20103)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA09A20103).
    [1]

    Constable S 2010 Geophysics 75 75A67

    [2]
    [3]
    [4]

    Eidesmo T, Ellingsrud S, MacGregor L M, Constable S, Sinha M C, Johansen S, Kong F N, Westerdahl H 2002 First Break 20 144

    [5]

    Chimedsurong Z, Wang H N 2003 Chin. J. Comput. Phys. 20 161 (in Chinese) [Z其木苏荣, 汪宏年 2003 计算物理 20 161]

    [6]
    [7]

    Liu C S, Everett M E, Lin J, Zhou F D 2010 Chin. J. Geophys. 53 1940 (in Chinese) [刘长胜, Everett M E, 林君, 周逢道 2010 地球物理学报 53 1940]

    [8]
    [9]
    [10]

    Li Y G, Constable S 2010 Chin. J. Geophys. 53 737

    [11]
    [12]

    Wang J X, Wang H N, Zhou J M, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese) [汪建勋, 汪宏年, 周建美, 殷长春 2013 物理学报 62 224101]

    [13]
    [14]

    Hong D C, Yang S D 2011 Acta Phys. Sin. 60 109101 (in Chinese) [洪德成, 杨善德 2011 物理学报 60 109101]

    [15]
    [16]

    Chen G B, Wang H N, Yao J J, Han Z Y, Yang S W 2009 Acta Phys. Sin. 58 1608 (in Chinese) [陈桂波, 汪宏年, 姚敬金, 韩子夜, 杨守文 2009 物理学报 58 1608]

    [17]
    [18]

    Chen G B, Bi J, Wang J B, Chen X Y, Sun G C, Lu J 2011 Acta Phys. Sin. 60 094102 (in Chinese) [陈桂波, 毕娟, 汪剑波, 陈新邑, 孙贯成, 卢俊 2011 物理学报 60 094102]

    [19]

    Yin C C 2006 Geophysics 71 G115

    [20]
    [21]
    [22]

    Wang H N, Yang S D, Wang Y 1999 Oil Geophys. Prospect. 34 649 (in Chinese) [汪宏年, 杨善德, 王艳 1999 石油地球物理勘探 34 649]

    [23]
    [24]

    Li F Y, Wen H, Fang Z Y 2013 Chin. Phys. B 22 120402

    [25]
    [26]

    Wang R, Gui L X, Ma J 2009 Chin. Phys. B 18 3422

    [27]
    [28]

    Zhou J M, Wang H N, Yao J J, Yang S W, Ma Y Z 2012 Acta Phys. Sin. 61 089101 (in Chinese) [周建美, 汪宏年, 姚敬金, 杨守文, 马寅芝 2012 物理学报 61 089101]

    [29]

    Yao D H, Wang H N, Yang S W, Yang H L 2010 Chin. J. Geophys. 53 3026 (in Chinese) [姚东华, 汪宏年, 杨守文, 杨海亮 2010 地球物理学报 53 3026]

    [30]
    [31]

    Xu Z F, Wu X P 2010 Chin. J. Geophys. 53 1931 (in Chinese) [徐志锋, 吴小平 2010 地球物理学报 53 1931]

    [32]
    [33]

    Zhang Y, Wang H N, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 2141 (in Chinese) [张烨, 汪宏年, 陶宏根, 杨守文 2012 地球物理学报 55 2141]

    [34]
    [35]
    [36]

    Yang B, Xu Y X, He Z X, Sun W B 2011 , Chin. J. Geophys. 54 1649 (in Chinese) [杨波, 徐义贤, 何展翔, 孙卫斌 2011 地球物理学报 54 1649]

    [37]
    [38]

    Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848 (in Chinese) [陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 物理学报 58 3848]

    [39]
    [40]

    Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote Sens. 50 3383

    [41]
    [42]

    Börner R 2010 Surv. Geophys. 31 225

    [43]

    Yee K S 1966 IEEE Trans. Antenn. Propag. 14 302

    [44]
    [45]

    Streich R 2009 Geophysics 74 F95

    [46]
    [47]
    [48]

    Schwarzbach C, Börner R, Spitzer K 2011 Geophys. J. Int. 187 63

    [49]
    [50]

    Newman G A, Alumbaugh D L 2002 Geophysics 67 484

    [51]
    [52]

    Kong F N, Johnstad S, RØsten T, Westerdahl H 2008 Geophysics 73 F9

    [53]
    [54]

    Schenk O, Gärtner K 2006 Electron. T. Numer. Ana. 23 158

    [55]

    Schenk O, Gärtner K 2004 Future Gener. Comp. Sy. 20 475

  • [1]

    Constable S 2010 Geophysics 75 75A67

    [2]
    [3]
    [4]

    Eidesmo T, Ellingsrud S, MacGregor L M, Constable S, Sinha M C, Johansen S, Kong F N, Westerdahl H 2002 First Break 20 144

    [5]

    Chimedsurong Z, Wang H N 2003 Chin. J. Comput. Phys. 20 161 (in Chinese) [Z其木苏荣, 汪宏年 2003 计算物理 20 161]

    [6]
    [7]

    Liu C S, Everett M E, Lin J, Zhou F D 2010 Chin. J. Geophys. 53 1940 (in Chinese) [刘长胜, Everett M E, 林君, 周逢道 2010 地球物理学报 53 1940]

    [8]
    [9]
    [10]

    Li Y G, Constable S 2010 Chin. J. Geophys. 53 737

    [11]
    [12]

    Wang J X, Wang H N, Zhou J M, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese) [汪建勋, 汪宏年, 周建美, 殷长春 2013 物理学报 62 224101]

    [13]
    [14]

    Hong D C, Yang S D 2011 Acta Phys. Sin. 60 109101 (in Chinese) [洪德成, 杨善德 2011 物理学报 60 109101]

    [15]
    [16]

    Chen G B, Wang H N, Yao J J, Han Z Y, Yang S W 2009 Acta Phys. Sin. 58 1608 (in Chinese) [陈桂波, 汪宏年, 姚敬金, 韩子夜, 杨守文 2009 物理学报 58 1608]

    [17]
    [18]

    Chen G B, Bi J, Wang J B, Chen X Y, Sun G C, Lu J 2011 Acta Phys. Sin. 60 094102 (in Chinese) [陈桂波, 毕娟, 汪剑波, 陈新邑, 孙贯成, 卢俊 2011 物理学报 60 094102]

    [19]

    Yin C C 2006 Geophysics 71 G115

    [20]
    [21]
    [22]

    Wang H N, Yang S D, Wang Y 1999 Oil Geophys. Prospect. 34 649 (in Chinese) [汪宏年, 杨善德, 王艳 1999 石油地球物理勘探 34 649]

    [23]
    [24]

    Li F Y, Wen H, Fang Z Y 2013 Chin. Phys. B 22 120402

    [25]
    [26]

    Wang R, Gui L X, Ma J 2009 Chin. Phys. B 18 3422

    [27]
    [28]

    Zhou J M, Wang H N, Yao J J, Yang S W, Ma Y Z 2012 Acta Phys. Sin. 61 089101 (in Chinese) [周建美, 汪宏年, 姚敬金, 杨守文, 马寅芝 2012 物理学报 61 089101]

    [29]

    Yao D H, Wang H N, Yang S W, Yang H L 2010 Chin. J. Geophys. 53 3026 (in Chinese) [姚东华, 汪宏年, 杨守文, 杨海亮 2010 地球物理学报 53 3026]

    [30]
    [31]

    Xu Z F, Wu X P 2010 Chin. J. Geophys. 53 1931 (in Chinese) [徐志锋, 吴小平 2010 地球物理学报 53 1931]

    [32]
    [33]

    Zhang Y, Wang H N, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 2141 (in Chinese) [张烨, 汪宏年, 陶宏根, 杨守文 2012 地球物理学报 55 2141]

    [34]
    [35]
    [36]

    Yang B, Xu Y X, He Z X, Sun W B 2011 , Chin. J. Geophys. 54 1649 (in Chinese) [杨波, 徐义贤, 何展翔, 孙卫斌 2011 地球物理学报 54 1649]

    [37]
    [38]

    Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848 (in Chinese) [陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 物理学报 58 3848]

    [39]
    [40]

    Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote Sens. 50 3383

    [41]
    [42]

    Börner R 2010 Surv. Geophys. 31 225

    [43]

    Yee K S 1966 IEEE Trans. Antenn. Propag. 14 302

    [44]
    [45]

    Streich R 2009 Geophysics 74 F95

    [46]
    [47]
    [48]

    Schwarzbach C, Börner R, Spitzer K 2011 Geophys. J. Int. 187 63

    [49]
    [50]

    Newman G A, Alumbaugh D L 2002 Geophysics 67 484

    [51]
    [52]

    Kong F N, Johnstad S, RØsten T, Westerdahl H 2008 Geophysics 73 F9

    [53]
    [54]

    Schenk O, Gärtner K 2006 Electron. T. Numer. Ana. 23 158

    [55]

    Schenk O, Gärtner K 2004 Future Gener. Comp. Sy. 20 475

  • [1] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法. 物理学报, 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [2] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [3] 王浩森, 杨守文, 白彦, 陈涛, 汪宏年. 非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法. 物理学报, 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [4] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [5] 张琪, 张然, 宋海明. 美式回望期权定价问题的有限体积法. 物理学报, 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [6] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [7] 陈萍, 唐志列, 王娟, 付晓娣, 陈飞虎. 用Stokes参量法实现数字同轴偏振全息的研究. 物理学报, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [8] 宁方立, 董梁, 张文治, 王康. 谐振管内非线性驻波的有限体积数值算法 . 物理学报, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [9] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性. 物理学报, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [10] 陈桂波, 汪宏年, 姚敬金, 韩子夜. 各向异性海底地层海洋可控源电磁响应三维积分方程法数值模拟. 物理学报, 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [11] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [12] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [13] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [15] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [16] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [17] 杜启振, 刘莲莲, 孙晶波. 各向异性粘弹性孔隙介质地震波场伪谱法正演模拟. 物理学报, 2007, 56(10): 6143-6149. doi: 10.7498/aps.56.6143
    [18] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [19] 杜启振. 各向异性黏弹性介质伪谱法波场模拟. 物理学报, 2004, 53(12): 4428-4434. doi: 10.7498/aps.53.4428
    [20] 阳世新, 李方华, 刘玉东, 古元新, 范海福. 直接法应用于蛋白质二维晶体的电子晶体学图像处理. 物理学报, 2000, 49(10): 1982-1987. doi: 10.7498/aps.49.1982
计量
  • 文章访问数:  3297
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-08
  • 修回日期:  2014-04-14
  • 刊出日期:  2014-08-05

耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应

  • 1. 吉林大学物理学院, 长春 130012;
  • 2. 长春理工大学理学院, 长春 130022;
  • 3. 吉林大学地球探测科学与技术学院, 长春 130026
    基金项目: 国家高技术研究发展计划(批准号:2012AA09A20103)资助的课题.

摘要: 本文基于电场矢势与标势分解的耦合势有限体积法研究建立一套各向异性地层中海洋可控源电磁法的三维响应的高效数值模拟技术. 首先引入电场的矢势和标势,将电场分解为无散场和无旋场之和,Maxwell方程转换为关于矢势与标势的混合Helmholtz方程,克服低感应数问题. 在此基础上,借助Yee氏交错网格和有限体积法以及非均质单元中等效电导率公式,建立混合Helmholtz方程的离散方程. 并采用直接法求解器PARDISO求解离散方程,有效保证在大的求解空间中仍然能够获得电磁场稳定可靠的数值解. 此外,在数值模拟中利用差异场技术,克服源的奇异性问题,尽可能提高近场的计算精度. 与解析解的对比证明了该算法的有效性. 数值模拟结果表明,海洋可控源电磁法沿测线方向的电场,对油气藏的纵向电阻率敏感,对横向电阻率不敏感;对油气藏上方的覆盖层的纵向电阻率和横向电阻率都敏感.

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回