搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2+1维刻蚀模型生长表面等高线的共形不变性研究

寻之朋 唐刚 夏辉 郝大鹏 宋丽建 杨毅

引用本文:
Citation:

2+1维刻蚀模型生长表面等高线的共形不变性研究

寻之朋, 唐刚, 夏辉, 郝大鹏, 宋丽建, 杨毅

Conformal invariance of isoheight lines of the (2+1)-dimensional etching surfaces

Xun Zhi-Peng, Tang Gang, Xia Hui, Hao Da-Peng, Song Li-Jian, Yang Yi
PDF
导出引用
  • 为了更全面、有效地研究刻蚀模型(etching model)涨落表面的统计性质,基于Schramm Loewner Evolution(SLE)理论,对2+1维刻蚀模型饱和表面的等高线进行了数值模拟分析. 研究表明,2+1维刻蚀模型饱和表面的等高线是共形不变曲线,可用Schramm Loewner Evolution理论进行描述,且扩散系数=2.70 0.04,属= 8/3普适类. 相应的等高线分形维数为df =1.34 0.01.
    In order to study the statistical properties of the surface fluctuations in the Etching model more comprehensively and effectively, based on the Schramm Loewner evolution (SLE) theory, the contour lines of the saturated surface in the (2+1)-dimensional Etching model are investigated by means of numerical simulations. Results show that the isoheight lines of the (2+1)-dimensional Etching surfaces are conformally invariant and can be described in the frame work of the SLE theory with diffusivity =2.70 0.04, which belongs to the =8/3 universality class. The corresponding fractal dimensions of the isoheight lines are df =1.34 0.01.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:2012QNA42)和国家自然科学基金(批准号:11247249,11304377,11304378)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2012QNA42), and the National Natural Science Foundation of China (Grant Nos. 11247249, 11304377, 11304378).
    [1]

    Barabsi A L, Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)

    [2]
    [3]

    Family F, Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific Press)

    [4]
    [5]

    Meakin P 1998 Fractals, Scaling and Growth Far from Equilibrium (Cambridge: Cambridge University Press)

    [6]

    Halpin-Healy T, Zhang Y C 1995 Phys. Rep. 254 215

    [7]
    [8]

    Family F, Vicsek T 1985 J. Phys. A: Math. Gen. 18 L75

    [9]
    [10]

    Tang G, Hao D P, Xia H, Han K, Xun Z P 2010 Chin. Phys. B 19 100508

    [11]
    [12]
    [13]

    Zhang Y W, Tang G, Han K, Xun Z P, Xie Y Y, Li Y 2012 Acta Phys. Sin. 61 020511 (in Chinese) [张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎 2012 物理学报 61 020511]

    [14]
    [15]

    Xun Z P, Tang G, Xia H, Hao D P 2013 Acta Phys. Sin. 62 010503 (in Chinese) [寻之朋, 唐刚, 夏辉, 郝大鹏 2013 物理学报 62 010503]

    [16]
    [17]

    Schramm O 2000 Isr. J. Math. 118 221

    [18]
    [19]

    Cardy J 2005 Ann. Phys. 318 81

    [20]
    [21]

    Bauer M, Bernard D 2006 Phys. Rep. 432 115

    [22]
    [23]

    Gruzberg I A 2006 J. Phys. A: Math. Gen. 39 12601

    [24]
    [25]

    Bernard D, Boffetta G, Celani A, Falkovich G 2006 Nat. Phy 2 124

    [26]

    Bernard D, Boffetta G, Celani A, Falkovich G 2007 Phys. Rev. Lett. 98 024501

    [27]
    [28]

    Amoruso C, Hartmann A K, Hastings M B, Moore M A 2006 Phys. Rev. Lett. 97 267202

    [29]
    [30]

    Bernard D, LeDoussal P, Middleton A A 2007 Phys. Rev. B 76 020403

    [31]
    [32]
    [33]

    Keating J P, Marklof J, Williams G 2006 Phys. Rev. Lett. 97 034101

    [34]
    [35]

    Bogomolny E, Dubertrand R, Schmit C 2007 J. Phys. A: Math. Theor. 40 381

    [36]
    [37]

    Saberi A A, Rajabpour M A, Rouhani S 2008 Phys. Rev. Lett. 100 044504

    [38]

    Saberi A A, Niry M D, Fazeli S M, Rahimi Tabar M R, Rouhani S 2008 Phys. Rev. E 77 051607

    [39]
    [40]

    Schramm O, Sheffield S 2009 Acta Math. 202 21

    [41]
    [42]

    Kim J M, Kosterlitz J M 1989 Phys. Rev. Lett. 62 2289

    [43]
    [44]
    [45]

    Wolf D E, Villain J 1990 Europhys. Lett. 13 389

    [46]

    Zhou W, Tang G, Han K, Xia H, Hao D P, Xun Z P, Yang X Q, Chen Y L, Wen R J 2011 Mod. Phys. Lett. B 25 255

    [47]
    [48]

    Chen Y L, Tang G, Han K, Xia H, Hao D P, Xun Z P, Wen R J 2011 J. Stat. Phys. 143 501

    [49]
    [50]

    Saberi A A, Dashti-Naserabadi H, Rouhani S 2010 Phys. Rev. E 82 020101

    [51]
    [52]
    [53]

    Mello B A 2001 Phys. Rev. E 63 041113

    [54]

    Aaro Reis F D A 2004 Phys. Rev. E 69 021610

    [55]
    [56]

    Tang G, Xun Z P, Wen R J, Han K, Xia H, Hao D P, Zhou W, Yang X Q, Chen Y L 2010 Physica A 389 4552

    [57]
    [58]

    Xun Z P, Zhang Y W, Li Y, Xia H, Hao D P, Tang G 2012 J. Stat. Mech: Theory and Experiment p10014

    [59]
  • [1]

    Barabsi A L, Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)

    [2]
    [3]

    Family F, Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific Press)

    [4]
    [5]

    Meakin P 1998 Fractals, Scaling and Growth Far from Equilibrium (Cambridge: Cambridge University Press)

    [6]

    Halpin-Healy T, Zhang Y C 1995 Phys. Rep. 254 215

    [7]
    [8]

    Family F, Vicsek T 1985 J. Phys. A: Math. Gen. 18 L75

    [9]
    [10]

    Tang G, Hao D P, Xia H, Han K, Xun Z P 2010 Chin. Phys. B 19 100508

    [11]
    [12]
    [13]

    Zhang Y W, Tang G, Han K, Xun Z P, Xie Y Y, Li Y 2012 Acta Phys. Sin. 61 020511 (in Chinese) [张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎 2012 物理学报 61 020511]

    [14]
    [15]

    Xun Z P, Tang G, Xia H, Hao D P 2013 Acta Phys. Sin. 62 010503 (in Chinese) [寻之朋, 唐刚, 夏辉, 郝大鹏 2013 物理学报 62 010503]

    [16]
    [17]

    Schramm O 2000 Isr. J. Math. 118 221

    [18]
    [19]

    Cardy J 2005 Ann. Phys. 318 81

    [20]
    [21]

    Bauer M, Bernard D 2006 Phys. Rep. 432 115

    [22]
    [23]

    Gruzberg I A 2006 J. Phys. A: Math. Gen. 39 12601

    [24]
    [25]

    Bernard D, Boffetta G, Celani A, Falkovich G 2006 Nat. Phy 2 124

    [26]

    Bernard D, Boffetta G, Celani A, Falkovich G 2007 Phys. Rev. Lett. 98 024501

    [27]
    [28]

    Amoruso C, Hartmann A K, Hastings M B, Moore M A 2006 Phys. Rev. Lett. 97 267202

    [29]
    [30]

    Bernard D, LeDoussal P, Middleton A A 2007 Phys. Rev. B 76 020403

    [31]
    [32]
    [33]

    Keating J P, Marklof J, Williams G 2006 Phys. Rev. Lett. 97 034101

    [34]
    [35]

    Bogomolny E, Dubertrand R, Schmit C 2007 J. Phys. A: Math. Theor. 40 381

    [36]
    [37]

    Saberi A A, Rajabpour M A, Rouhani S 2008 Phys. Rev. Lett. 100 044504

    [38]

    Saberi A A, Niry M D, Fazeli S M, Rahimi Tabar M R, Rouhani S 2008 Phys. Rev. E 77 051607

    [39]
    [40]

    Schramm O, Sheffield S 2009 Acta Math. 202 21

    [41]
    [42]

    Kim J M, Kosterlitz J M 1989 Phys. Rev. Lett. 62 2289

    [43]
    [44]
    [45]

    Wolf D E, Villain J 1990 Europhys. Lett. 13 389

    [46]

    Zhou W, Tang G, Han K, Xia H, Hao D P, Xun Z P, Yang X Q, Chen Y L, Wen R J 2011 Mod. Phys. Lett. B 25 255

    [47]
    [48]

    Chen Y L, Tang G, Han K, Xia H, Hao D P, Xun Z P, Wen R J 2011 J. Stat. Phys. 143 501

    [49]
    [50]

    Saberi A A, Dashti-Naserabadi H, Rouhani S 2010 Phys. Rev. E 82 020101

    [51]
    [52]
    [53]

    Mello B A 2001 Phys. Rev. E 63 041113

    [54]

    Aaro Reis F D A 2004 Phys. Rev. E 69 021610

    [55]
    [56]

    Tang G, Xun Z P, Wen R J, Han K, Xia H, Hao D P, Zhou W, Yang X Q, Chen Y L 2010 Physica A 389 4552

    [57]
    [58]

    Xun Z P, Zhang Y W, Li Y, Xia H, Hao D P, Tang G 2012 J. Stat. Mech: Theory and Experiment p10014

    [59]
  • [1] 张芳, 张耀宇, 薛喜昌, 贾利群. 相对运动完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2015, 64(13): 134501. doi: 10.7498/aps.64.134501
    [2] 张芳, 李伟, 张耀宇, 薛喜昌, 贾利群. 变质量Chetaev型非完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2014, 63(16): 164501. doi: 10.7498/aps.63.164501
    [3] 刘洪伟. 广义Hamilton系统的共形不变性与Mei守恒量. 物理学报, 2014, 63(5): 050201. doi: 10.7498/aps.63.050201
    [4] 孙现亭, 张耀宇, 张芳, 贾利群. 完整系统Appell方程Lie对称性的共形不变性与Hojman守恒量. 物理学报, 2014, 63(14): 140201. doi: 10.7498/aps.63.140201
    [5] 王廷志, 孙现亭, 韩月林. 相空间中相对运动完整力学系统的共形不变性与守恒量. 物理学报, 2014, 63(10): 104502. doi: 10.7498/aps.63.104502
    [6] 王廷志, 孙现亭, 韩月林. 非完整系统的共形不变性导致的新型守恒量. 物理学报, 2014, 63(9): 090201. doi: 10.7498/aps.63.090201
    [7] 王廷志, 孙现亭, 韩月林. 相对运动变质量完整系统的共形不变性与守恒量 . 物理学报, 2013, 62(23): 231101. doi: 10.7498/aps.62.231101
    [8] 韩月林, 孙现亭, 张耀宇, 贾利群. 完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2013, 62(16): 160201. doi: 10.7498/aps.62.160201
    [9] 陈蓉, 许学军. 单面Chetaev型非完整系统的共形不变性、Noether对称性和Lie对称性. 物理学报, 2012, 61(14): 141101. doi: 10.7498/aps.61.141101
    [10] 陈蓉, 许学军. 变质量完整系统的共形不变性和Noether对称性及Lie对称性. 物理学报, 2012, 61(2): 021102. doi: 10.7498/aps.61.021102
    [11] 谢裕颖, 唐刚, 寻之朋, 韩奎, 夏辉, 郝大鹏, 张永伟, 李炎. 随机稀释基底上刻蚀模型动力学标度行为的数值模拟研究. 物理学报, 2012, 61(7): 070506. doi: 10.7498/aps.61.070506
    [12] 蔡建乐, 史生水. Chetaev型非完整系统Mei对称性的共形不变性与守恒量. 物理学报, 2012, 61(3): 030201. doi: 10.7498/aps.61.030201
    [13] 刘洪伟, 李玲飞, 杨士通. Kepler方程的共形不变性、Mei对称性与守恒量. 物理学报, 2012, 61(20): 200202. doi: 10.7498/aps.61.200202
    [14] 张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的数值模拟研究. 物理学报, 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [15] 陈向炜, 赵永红, 刘畅. 变质量完整动力学系统的共形不变性与守恒量. 物理学报, 2009, 58(8): 5150-5154. doi: 10.7498/aps.58.5150
    [16] 蔡建乐. 一般完整系统Mei对称性的共形不变性与守恒量. 物理学报, 2009, 58(1): 22-27. doi: 10.7498/aps.58.22
    [17] 蔡建乐, 梅凤翔. Lagrange系统Lie点变换下的共形不变性与守恒量. 物理学报, 2008, 57(9): 5369-5373. doi: 10.7498/aps.57.5369
    [18] 刘 畅, 刘世兴, 梅凤翔, 郭永新. 广义Hamilton系统的共形不变性与Hojman守恒量. 物理学报, 2008, 57(11): 6709-6713. doi: 10.7498/aps.57.6709
    [19] 刘 畅, 梅凤翔, 郭永新. Lagrange系统的共形不变性与Hojman守恒量. 物理学报, 2008, 57(11): 6704-6708. doi: 10.7498/aps.57.6704
    [20] 熊庄, 管习文, 周焕强. 开边界条件下Fateev-Zamolodchikov模型的潜藏定域规范不变性. 物理学报, 1992, 41(12): 2034-2042. doi: 10.7498/aps.41.2034
计量
  • 文章访问数:  2557
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-11
  • 修回日期:  2014-04-07
  • 刊出日期:  2014-08-05

2+1维刻蚀模型生长表面等高线的共形不变性研究

  • 1. 中国矿业大学理学院物理系, 徐州 221116
    基金项目: 中央高校基本科研业务费专项资金(批准号:2012QNA42)和国家自然科学基金(批准号:11247249,11304377,11304378)资助的课题.

摘要: 为了更全面、有效地研究刻蚀模型(etching model)涨落表面的统计性质,基于Schramm Loewner Evolution(SLE)理论,对2+1维刻蚀模型饱和表面的等高线进行了数值模拟分析. 研究表明,2+1维刻蚀模型饱和表面的等高线是共形不变曲线,可用Schramm Loewner Evolution理论进行描述,且扩散系数=2.70 0.04,属= 8/3普适类. 相应的等高线分形维数为df =1.34 0.01.

English Abstract

参考文献 (59)

目录

    /

    返回文章
    返回