-
Conformal invariance and conserved quantity of relative motion holonomic dynamical system in phase space are studied. The definition of conformal invariance of relative motion holonomic dynamical system in phase space is provided. The necessary and sufficient conditions that conformal invariance of the system would be Lie symmetry are deduced. By use of a structure equation that the gauge function satisfies, the corresponding conserved quantity of the system is derived. Finally an illustrative example is given to verify the results.
-
Keywords:
- phase space /
- relative motion /
- conformal invariance /
- conserved quantity
[1] Noether A E 1918 Nachr. Akad. Wiss. Göttingen Math. Phys. 2 235
[2] Djukic D S, Vujanovi B D 1975 Acta Mech. 23 17
[3] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[4] Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291
[5] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) p43 (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社) 第43页]
[6] Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M 1997 Analytical Dynamics of Helmholtz Birkhoff and Nambu Systems (Moscow: UFN) p183 (in Russian)
[7] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) p366 (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社) 第366页]
[8] Zhang M L, Wang X X, Han Y L, Jia L Q 2012 Chin. Phys. B 21 100203
[9] Wang X X, Han Y L, Zhang M L, Jia L Q 2013 Chin. Phys. B 22 020201
[10] Luo S K, Li Z J, Li L 2012 Acta Mech. 223 2621
[11] Li Z J, Luo S K 2012 Nonlinear Dyn. 70 1117
[12] Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 71 401
[13] Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 73 357
[14] Lou Z M, Mei F X, Chen Z D 2012 Acta Phys. Sin. 61 110204 (in Chinese) [楼智美, 梅凤翔, 陈子栋 2012 物理学报 61 110204]
[15] Xu C, Li Y C 2013 Acta Phys. Sin. 62 171101 (in Chinese) [徐超, 李元成 2013 物理学报 62 171101]
[16] Yang X F, Sun X T, Wang X X, Zhang M L, Jia L Q 2011 Acta Phys. Sin. 60 111101 (in Chinese) [杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群 2011 物理学报 60 111101]
[17] Wang X X, Zhang M L, Han Y L, Jia L Q 2012 Acta Phys. Sin. 61 200203 (in Chinese) [王肖肖, 张美玲, 韩月林, 贾利群 2012 物理学报 61 200203]
[18] Sun X T, Han Y L, Wang X X, Zhang M L, Jia L Q 2012 Acta Phys. Sin. 61 200204 (in Chinese) [孙现亭, 韩月林, 王肖肖, 张美玲, 贾利群 2012 物理学报 61 200204]
[19] Zhang M L, Wang X X, Han Y L, Jia L Q 2012 Chin. Phys. B 21 100203
[20] Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807
[21] Zhang Y, Xue Y 2009 Chin. Q. Mech. 30 216 (in Chinese) [张毅, 薛纭 2009 力学季刊 30 216]
[22] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese) [蔡建乐 2009 物理学报 58 22]
[23] Han Y L, Sun X T, Zhang Y Y, Jia L Q 2013 Acta Phys. Sin. 62 160201 (in Chinese) [韩月林, 孙现亭, 张耀宇, 贾利群 2013 物理学报 62 160201]
[24] Chen X W, Zhao Y H, Liu C 2009 Acta Phys. Sin. 58 5150 (in Chinese) [陈向炜, 赵永红, 刘畅2009 物理学报 58 5150]
[25] Chen R, Xu X J 2012 Acta Phys. Sin. 61 021102 (in Chinese) [陈蓉, 许学军 2012 物理学报 61 021102]
[26] Chen X W, Zhao Y H, Li Y M 2009 Chin. Phys. B 18 3139
[27] Cai J L, Shi S S, Fang H J, Xu J 2012 Mechanica 47 63
[28] Huang W L, Cai J L 2012 Acta Mech. 223 433
[29] Cai J L 2012 Nonlinear Dyn. 69 487
[30] Wang T Z, Sun X T, Han Y L 2013 Acta Phys. Sin. 62 231101 (in Chinese) [王廷志, 孙现亭, 韩月林 2013 物理学报 62 231101]
[31] Cai J L, Luo S K, Mei F X 2008 Chin. Phys. B 17 3170
[32] Fang J H, Zhang P Y 2004 Acta Phys. Sin. 53 4041 (in Chinese) [方建会, 张鹏玉 2004 物理学报 53 4041]
[33] Fang J H, Zhang B, Zhang W W, Xu R L 2012 Chin. Phys. B 21 050202
-
[1] Noether A E 1918 Nachr. Akad. Wiss. Göttingen Math. Phys. 2 235
[2] Djukic D S, Vujanovi B D 1975 Acta Mech. 23 17
[3] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[4] Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291
[5] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) p43 (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社) 第43页]
[6] Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M 1997 Analytical Dynamics of Helmholtz Birkhoff and Nambu Systems (Moscow: UFN) p183 (in Russian)
[7] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) p366 (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社) 第366页]
[8] Zhang M L, Wang X X, Han Y L, Jia L Q 2012 Chin. Phys. B 21 100203
[9] Wang X X, Han Y L, Zhang M L, Jia L Q 2013 Chin. Phys. B 22 020201
[10] Luo S K, Li Z J, Li L 2012 Acta Mech. 223 2621
[11] Li Z J, Luo S K 2012 Nonlinear Dyn. 70 1117
[12] Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 71 401
[13] Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 73 357
[14] Lou Z M, Mei F X, Chen Z D 2012 Acta Phys. Sin. 61 110204 (in Chinese) [楼智美, 梅凤翔, 陈子栋 2012 物理学报 61 110204]
[15] Xu C, Li Y C 2013 Acta Phys. Sin. 62 171101 (in Chinese) [徐超, 李元成 2013 物理学报 62 171101]
[16] Yang X F, Sun X T, Wang X X, Zhang M L, Jia L Q 2011 Acta Phys. Sin. 60 111101 (in Chinese) [杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群 2011 物理学报 60 111101]
[17] Wang X X, Zhang M L, Han Y L, Jia L Q 2012 Acta Phys. Sin. 61 200203 (in Chinese) [王肖肖, 张美玲, 韩月林, 贾利群 2012 物理学报 61 200203]
[18] Sun X T, Han Y L, Wang X X, Zhang M L, Jia L Q 2012 Acta Phys. Sin. 61 200204 (in Chinese) [孙现亭, 韩月林, 王肖肖, 张美玲, 贾利群 2012 物理学报 61 200204]
[19] Zhang M L, Wang X X, Han Y L, Jia L Q 2012 Chin. Phys. B 21 100203
[20] Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807
[21] Zhang Y, Xue Y 2009 Chin. Q. Mech. 30 216 (in Chinese) [张毅, 薛纭 2009 力学季刊 30 216]
[22] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese) [蔡建乐 2009 物理学报 58 22]
[23] Han Y L, Sun X T, Zhang Y Y, Jia L Q 2013 Acta Phys. Sin. 62 160201 (in Chinese) [韩月林, 孙现亭, 张耀宇, 贾利群 2013 物理学报 62 160201]
[24] Chen X W, Zhao Y H, Liu C 2009 Acta Phys. Sin. 58 5150 (in Chinese) [陈向炜, 赵永红, 刘畅2009 物理学报 58 5150]
[25] Chen R, Xu X J 2012 Acta Phys. Sin. 61 021102 (in Chinese) [陈蓉, 许学军 2012 物理学报 61 021102]
[26] Chen X W, Zhao Y H, Li Y M 2009 Chin. Phys. B 18 3139
[27] Cai J L, Shi S S, Fang H J, Xu J 2012 Mechanica 47 63
[28] Huang W L, Cai J L 2012 Acta Mech. 223 433
[29] Cai J L 2012 Nonlinear Dyn. 69 487
[30] Wang T Z, Sun X T, Han Y L 2013 Acta Phys. Sin. 62 231101 (in Chinese) [王廷志, 孙现亭, 韩月林 2013 物理学报 62 231101]
[31] Cai J L, Luo S K, Mei F X 2008 Chin. Phys. B 17 3170
[32] Fang J H, Zhang P Y 2004 Acta Phys. Sin. 53 4041 (in Chinese) [方建会, 张鹏玉 2004 物理学报 53 4041]
[33] Fang J H, Zhang B, Zhang W W, Xu R L 2012 Chin. Phys. B 21 050202
计量
- 文章访问数: 6286
- PDF下载量: 411
- 被引次数: 0