x

## 留言板

 引用本文:
 Citation:

## Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems

Cai Jian-Le
PDF
• #### 摘要

研究一般完整系统Mei对称性的共邢不变性与守恒量.引入无限小单参数变换群及其生成元向量，定义一般完整系统动力学方程的Mei对称性共形不变性，借助Euler算子导出Mei对称性共形不变性的相关条件，给出其确定方程.讨论共形不变性与Noether对称性、Lie对称性以及Mei对称性之间的关系.利用规范函数满足的结构方程得到系统相应的守恒量.举例说明结果的应用.

#### Abstract

Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems are studied thoroughly. By introducing a single-parameter infinitesimal transformation group and its infinitesimal transformation vector of generators, definitions of the conformal invariance of Mei symmetry for the system are provided. Conditions that the conformal invariance should satisfy are derived using the Euler operator, and their determining equations are then presented. Moreover, the relationship between conformal invariance and the three symmetries, i.e., Noether symmetry, Lie symmetry and Mei symmetry, are discussed. The system’s corresponding conserved quantities are obtained, according to the structure equation satisfied by the gauge function. Finally, an example is provided to illustrate how the given result can be applied.

#### 作者及机构信息

###### 1. 杭州师范大学理学院，杭州 310018
• 基金项目: 国家自然科学基金(批准号：10572021，10772025)和高等学校博士学科点专项科研基金(批准号：20040007022)资助的课题.

#### 施引文献

•  [1] 张芳, 张耀宇, 薛喜昌, 贾利群. 相对运动完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2015, 64(13): 134501. doi: 10.7498/aps.64.134501 [2] 黄卫立. 一般完整系统Mei对称性的逆问题. 物理学报, 2015, 64(17): 170202. doi: 10.7498/aps.64.170202 [3] 刘洪伟. 广义Hamilton系统的共形不变性与Mei守恒量. 物理学报, 2014, 63(5): 050201. doi: 10.7498/aps.63.050201 [4] 张芳, 李伟, 张耀宇, 薛喜昌, 贾利群. 变质量Chetaev型非完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2014, 63(16): 164501. doi: 10.7498/aps.63.164501 [5] 孙现亭, 张耀宇, 张芳, 贾利群. 完整系统Appell方程Lie对称性的共形不变性与Hojman守恒量. 物理学报, 2014, 63(14): 140201. doi: 10.7498/aps.63.140201 [6] 王廷志, 孙现亭, 韩月林. 相空间中相对运动完整力学系统的共形不变性与守恒量. 物理学报, 2014, 63(10): 104502. doi: 10.7498/aps.63.104502 [7] 王廷志, 孙现亭, 韩月林. 相对运动变质量完整系统的共形不变性与守恒量. 物理学报, 2013, 62(23): 231101. doi: 10.7498/aps.62.231101 [8] 韩月林, 孙现亭, 张耀宇, 贾利群. 完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2013, 62(16): 160201. doi: 10.7498/aps.62.160201 [9] 陈蓉, 许学军. 单面Chetaev型非完整系统的共形不变性、Noether对称性和Lie对称性. 物理学报, 2012, 61(14): 141101. doi: 10.7498/aps.61.141101 [10] 陈蓉, 许学军. 变质量完整系统的共形不变性和Noether对称性及Lie对称性. 物理学报, 2012, 61(2): 021102. doi: 10.7498/aps.61.021102 [11] 刘洪伟, 李玲飞, 杨士通. Kepler方程的共形不变性、Mei对称性与守恒量. 物理学报, 2012, 61(20): 200202. doi: 10.7498/aps.61.200202 [12] 蔡建乐, 史生水. Chetaev型非完整系统Mei对称性的共形不变性与守恒量. 物理学报, 2012, 61(3): 030201. doi: 10.7498/aps.61.030201 [13] 刘仰魁. 一般完整力学系统Mei对称性的一种守恒量. 物理学报, 2010, 59(1): 7-10. doi: 10.7498/aps.59.7 [14] 郑世旺, 解加芳, 陈向炜, 杜雪莲. 完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量. 物理学报, 2010, 59(8): 5209-5212. doi: 10.7498/aps.59.5209 [15] 方建会. Lagrange系统Mei对称性直接导致的一种守恒量. 物理学报, 2009, 58(6): 3617-3619. doi: 10.7498/aps.58.3617 [16] 葛伟宽. 一类完整系统的Mei对称性与守恒量. 物理学报, 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714 [17] 蔡建乐, 梅凤翔. Lagrange系统Lie点变换下的共形不变性与守恒量. 物理学报, 2008, 57(9): 5369-5373. doi: 10.7498/aps.57.5369 [18] 郑世旺, 贾利群. 非完整系统Tzénoff方程的Mei对称性和守恒量. 物理学报, 2007, 56(2): 661-665. doi: 10.7498/aps.56.661 [19] 方建会, 廖永潘, 彭 勇. 相空间中力学系统的两类Mei对称性及守恒量. 物理学报, 2005, 54(2): 500-503. doi: 10.7498/aps.54.500 [20] 张 毅. 广义经典力学系统的对称性与Mei守恒量. 物理学报, 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
• 文章访问数:  7999
• PDF下载量:  910
• 被引次数: 0
##### 出版历程
• 收稿日期:  2008-04-08
• 修回日期:  2008-07-02
• 刊出日期:  2009-01-20

/