搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂型腔充模中纤维取向的动态模拟

杨斌鑫 欧阳洁 栗雪娟

引用本文:
Citation:

复杂型腔充模中纤维取向的动态模拟

杨斌鑫, 欧阳洁, 栗雪娟

Dynamic simulation of fiber orientation in mold filling process in a complex cavity

Yang Bin-Xin, Ouyang Jie, Li Xue-Juan
PDF
导出引用
  • 基于描述短纤维增强复合材料充模过程的气-固-液三相模型及同位网格有限体积法, 实现了纤维增强复合材料沿复杂型腔水平中面充模过程的动态模拟. 不仅得到了界面位置、各物理量的信息, 而且得到了纤维在型腔中的运动情况(包括纤维的平动和取向). 结果表明, 与沿型腔厚度方向纤维取向的表层-芯层结构不同, 纤维沿型腔水平中面的取向与型腔结构有关, 入口处纤维取向环绕型腔入口, 沿水平或竖直方向纤维取向与来流方向垂直, 型腔拐角处纤维取向指向拐点.
    A dynamic simulation of fiber reinforced composite mold filling process in a complex cavity is presented based on the gas-solid-liquid three-phase model for mold filling and the finite volume method on non-staggered grids. The interface evolution and the information about physical quantities, such as velocity, stresses, pressure, etc, are given. The motions of fibers, including transformation and orientation, are obtained as well. Numerical results show that fiber orientation in the horizontal mid-plane is related to the shape of the cavity, which is quite different from the case of the skin-core-skin structure orientation along cavity thickness. In the inlet region, fibers encircle the cavity inlet, and fiber orientation is vertical to the incoming flow direction along the horizontal and the vertical regions of the cavity, while around the corners of the cavity, fibers point to the corners of the cavity.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB025903), 国家自然科学基金项目(批准号:10871159)和太原科技大学基金(批准号: 20112011)资助的课题.
    • Funds: Project supported by the National Key Basic Research Program of China (Grant No. 2012CB025903), the National Natural Science Foundation of China (Grant No. 10871159) and the Taiyuan Univerity of Science and Technology Foundation, China(Grant No. 20112011).
    [1]

    Zhang H P, Ouyang J, Ruan C L 2009 Acta Phys. Sin. 58 0619 (in Chinese) [张红平, 欧阳洁, 阮春蕾 2009 物理学报 58 0619]

    [2]

    Yerramalli C S, Waas A M 2007 CMES: Computer Modeling in Engineering & Sciences 6 1

    [3]

    Verbis J T, Tsinopoulos S V, Polyzos D 2002 CMES: Computer Modeling in Engineering & Sciences 3 803

    [4]

    Pyo S H, Lee H K 2009 CMES: Computer Modeling in Engineering & Sciences 40 271

    [5]

    Henry De Frahan H, Verleye V, Dupret F, Crochet M J 1992 Polymer Engineering and Science 32 254

    [6]

    McGrath J J, Wille J M 1995 Composites Science and Technology 53 133

    [7]

    Kim E G, Park J K, Jo S H 2001 Journal of Materials Processing Technology 111 225

    [8]

    Chung D H, Kwon T H 2002 Korea-Australia Theology Journal 14 175

    [9]

    Zhou W,Wang L G, Fan X J, Li Y J, Chen Y H 1995 CIESC Journal 46 493 (in Chinese) [周伟, 王立刚, 范西俊, 李玉景, 陈一泓 1995 化工学报 46 493]

    [10]

    Ye H Y, Zhou C X 1994 Polymer Material Science and Engineering 10 73 (in Chinese) [叶红宇, 周持兴 1994 高分子材料科学与工程 10 73]

    [11]

    Lin L F 1998 Materials Science and Technology 16 28 (in Chinese) [林兰芬 1998 材料科学与工艺 16 28]

    [12]

    Zhang H P, Ouyang J 2007 Acta Materiae Compositae Sinica 24 153 (in Chinese) [张红平, 欧阳洁 2007 复合材料学报 24 153]

    [13]

    Yang B X, Ouyang J, Jiang T, Liu C T 2010 CMES - Computer Modeling in Engineering and Sciences 63 191

    [14]

    Tsuji Y, Morikawa Y, Tanaka T 1987 International Journal of Multiphase Flow 19 187

    [15]

    Sussman M, Fatemi E, Smereka P, Osher S 1998 Computational Fluids 27 663

    [16]

    Tran-Cong S, Gay M, Efstathios E 2004 Powder Technology 139 21

    [17]

    Ouyang J, Li J H 1999 Chemical Engineering Science 54 2077

    [18]

    Jeffery G B 1992 Proceedings of the Royal Society of London Series A 102 161

    [19]

    Zhou K, Lin J Z 2008 Fibers and Polymers 9 39

    [20]

    Aboubacar M, Aguayo J P, Phillips P M, Phillips T N, Tamaddon- Jahromi H R, Snigerev B A, Webster M F 2005 Journal of Non- Newtonian Fluid Mechanics 126 207

  • [1]

    Zhang H P, Ouyang J, Ruan C L 2009 Acta Phys. Sin. 58 0619 (in Chinese) [张红平, 欧阳洁, 阮春蕾 2009 物理学报 58 0619]

    [2]

    Yerramalli C S, Waas A M 2007 CMES: Computer Modeling in Engineering & Sciences 6 1

    [3]

    Verbis J T, Tsinopoulos S V, Polyzos D 2002 CMES: Computer Modeling in Engineering & Sciences 3 803

    [4]

    Pyo S H, Lee H K 2009 CMES: Computer Modeling in Engineering & Sciences 40 271

    [5]

    Henry De Frahan H, Verleye V, Dupret F, Crochet M J 1992 Polymer Engineering and Science 32 254

    [6]

    McGrath J J, Wille J M 1995 Composites Science and Technology 53 133

    [7]

    Kim E G, Park J K, Jo S H 2001 Journal of Materials Processing Technology 111 225

    [8]

    Chung D H, Kwon T H 2002 Korea-Australia Theology Journal 14 175

    [9]

    Zhou W,Wang L G, Fan X J, Li Y J, Chen Y H 1995 CIESC Journal 46 493 (in Chinese) [周伟, 王立刚, 范西俊, 李玉景, 陈一泓 1995 化工学报 46 493]

    [10]

    Ye H Y, Zhou C X 1994 Polymer Material Science and Engineering 10 73 (in Chinese) [叶红宇, 周持兴 1994 高分子材料科学与工程 10 73]

    [11]

    Lin L F 1998 Materials Science and Technology 16 28 (in Chinese) [林兰芬 1998 材料科学与工艺 16 28]

    [12]

    Zhang H P, Ouyang J 2007 Acta Materiae Compositae Sinica 24 153 (in Chinese) [张红平, 欧阳洁 2007 复合材料学报 24 153]

    [13]

    Yang B X, Ouyang J, Jiang T, Liu C T 2010 CMES - Computer Modeling in Engineering and Sciences 63 191

    [14]

    Tsuji Y, Morikawa Y, Tanaka T 1987 International Journal of Multiphase Flow 19 187

    [15]

    Sussman M, Fatemi E, Smereka P, Osher S 1998 Computational Fluids 27 663

    [16]

    Tran-Cong S, Gay M, Efstathios E 2004 Powder Technology 139 21

    [17]

    Ouyang J, Li J H 1999 Chemical Engineering Science 54 2077

    [18]

    Jeffery G B 1992 Proceedings of the Royal Society of London Series A 102 161

    [19]

    Zhou K, Lin J Z 2008 Fibers and Polymers 9 39

    [20]

    Aboubacar M, Aguayo J P, Phillips P M, Phillips T N, Tamaddon- Jahromi H R, Snigerev B A, Webster M F 2005 Journal of Non- Newtonian Fluid Mechanics 126 207

  • [1] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [2] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [3] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [4] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [5] 高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊. 双液滴同时垂直撞击壁面的数值研究. 物理学报, 2017, 66(2): 024702. doi: 10.7498/aps.66.024702
    [6] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计. 物理学报, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [7] 王浩森, 杨守文, 白彦, 陈涛, 汪宏年. 非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法. 物理学报, 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [8] 张琪, 张然, 宋海明. 美式回望期权定价问题的有限体积法. 物理学报, 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [9] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性. 物理学报, 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [10] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应. 物理学报, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [11] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [12] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [13] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [14] 李振武. 纳米CdS/碳纳米管复合材料的光电特性. 物理学报, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [15] 宁方立, 董梁, 张文治, 王康. 谐振管内非线性驻波的有限体积数值算法 . 物理学报, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [16] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测. 物理学报, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [17] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [18] 孙建平, 翁家宝, 黄小珠, 马琳璞. 聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管复合材料的制备和性能研究. 物理学报, 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [19] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  3731
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-18
  • 修回日期:  2011-05-10
  • 刊出日期:  2012-02-05

复杂型腔充模中纤维取向的动态模拟

  • 1. 西北工业大学理学院应用数学系, 西安 710129;
  • 2. 太原科技大学数学系, 太原 030024
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB025903), 国家自然科学基金项目(批准号:10871159)和太原科技大学基金(批准号: 20112011)资助的课题.

摘要: 基于描述短纤维增强复合材料充模过程的气-固-液三相模型及同位网格有限体积法, 实现了纤维增强复合材料沿复杂型腔水平中面充模过程的动态模拟. 不仅得到了界面位置、各物理量的信息, 而且得到了纤维在型腔中的运动情况(包括纤维的平动和取向). 结果表明, 与沿型腔厚度方向纤维取向的表层-芯层结构不同, 纤维沿型腔水平中面的取向与型腔结构有关, 入口处纤维取向环绕型腔入口, 沿水平或竖直方向纤维取向与来流方向垂直, 型腔拐角处纤维取向指向拐点.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回