搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性熔体充模流动诱导残余应力模拟

杨斌鑫 欧阳洁

引用本文:
Citation:

黏弹性熔体充模流动诱导残余应力模拟

杨斌鑫, 欧阳洁

Simulation of residual stress in viscoelastic mold filling process

Yang Bin-Xin, Ouyang Jie
PDF
导出引用
  • 流动诱导残余应力是塑料制品产生应力开裂以及翘曲变形等现象的重要原因, 对成型过程中流动诱导残余应力研究具有重要意义. 推导了基于黏弹性eXtended Pom-Pom本构关系的能量方程, 进而建立了描述黏弹性流体非等温充模流动的气-液两相模型. 用同位网格有限体积法进行了求解, 得到了凝固层和剪切速率分布, 给出了充填结束时影响制件力学性能的流动诱导残余应力. 结果表明, 型腔中凝固层的厚度与注射速率有关, 注射速率越大, 充模时间越短, 凝固层越薄. 在制品表层紧邻模壁的地方, 剪切速率和残余应力几乎为零; 在制品次表层的位置, 制件内剪切速率和流动残余应力也较高; 而在远离模壁的地方, 剪切速率和流动残余应力也较小.
    Flow induced residual stress is the major reason for stress cracking and warping of plastic products, the study on which is significant to overcome the flaws of products. In this paper, the energy equation based on Extended Pom-Pom constitutive relationship is deduced. A non-isothermal viscoelastic-Newtonian two-phase fluid model for mold filling process of viscoelastic materials is set up. The conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation. The distribution of the frozen skin layer and the shear rates are given. The flow induced residual stress is predicted and analyzed. The numerical results show that the thickness of the frozen skin layer is dependent on the injection velocity and a higher injection velocity corresponds to a thin frozen skin layer. Near the walls of the product, the shear rate and the residual stress are almost zero. At the position of subsurface, the shear rate and the residual stress reach their largest values. At the positions far away from the walls of the product, the shear rate and the residual stress are small.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB025903)、山西省自然科学基金(批准号: 2012011019-2) 和太原科技大学博士基金(批准号: 20112011)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB025903), the Natural Science Foundation of Shanxi Province, China (Grant No. 2012011019-2), and the Taiyuan University of Science and Technology Doctoral Sustentation Fund, China (Grant No. 20112011).
    [1]

    Shen C Y 2009 Simulation of Injection Molding and Theories and Methods for Optimization of Moulds Designing (Beijing: Science Press) p1-23 (in Chinese) [申长雨 2009 注塑成型模拟及模具优化设计理论与方法(北京:科学出版社) 第1—23页]

    [2]

    Yang B X, Ouyang J, Li X J 2012 Acta Phys. Sin. 61 044701 [杨斌鑫, 欧阳洁, 栗雪娟 2012 物理学报 61 044701]

    [3]

    Sethian J A 1999 SIAM Review 41 199

    [4]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [5]

    Osher S, Fedkiw R P 2001 J. Comput. Phys. 169 463

    [6]

    Sussman M, Fatemi E, Smereka P, Osher S 1998 Computational Fluids 27 663

    [7]

    Aboubacar M, Aguayo J P, Phillips P M, Phillips T N, Tamaddon-Jahromi H R, Snigerev B A, Webster M F 2005 Journal of Non-Newtonian Fluid Mechanics 126 207

    [8]

    Peters G W M, Baaijens F P T 1997 Journal of Non-Newtonian Fluid Mechanics 68 205

    [9]

    Peters G W M 1993 Thermorheological Modeling of Viscoelastic Materials (Dordrecht: Kluwer Academic Publishers) p1-200

    [10]

    Oliveira P J, Pinho F T, Pinto G A 1998 Journal of Non-Newtonian Fluid Mechanics 79 1

    [11]

    Yang B X, Ouyang J, Jiang T, Liu C T 2010 CMES-Computer Modeling in Engineering and Sciences 63 191

    [12]

    Harten A, Osher S 1987 SIAM Journal Numerical Analysis 24 279

    [13]

    Liu X D, Osher S, Chan T 1994 J. Comput. Phys. 115 217

    [14]

    Jiang G S, Peng D P 2000 SIAM Journal on Scientific Computing 21 2126

    [15]

    Harten A 1983 J. Comput. Phys. 49 357

    [16]

    Beaumont J P, Nagel R, Sherman R 2002 Successful Injection Molding: Process, Design and Simulation (Cincinnati: Hanser Publisher) p1-391

  • [1]

    Shen C Y 2009 Simulation of Injection Molding and Theories and Methods for Optimization of Moulds Designing (Beijing: Science Press) p1-23 (in Chinese) [申长雨 2009 注塑成型模拟及模具优化设计理论与方法(北京:科学出版社) 第1—23页]

    [2]

    Yang B X, Ouyang J, Li X J 2012 Acta Phys. Sin. 61 044701 [杨斌鑫, 欧阳洁, 栗雪娟 2012 物理学报 61 044701]

    [3]

    Sethian J A 1999 SIAM Review 41 199

    [4]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [5]

    Osher S, Fedkiw R P 2001 J. Comput. Phys. 169 463

    [6]

    Sussman M, Fatemi E, Smereka P, Osher S 1998 Computational Fluids 27 663

    [7]

    Aboubacar M, Aguayo J P, Phillips P M, Phillips T N, Tamaddon-Jahromi H R, Snigerev B A, Webster M F 2005 Journal of Non-Newtonian Fluid Mechanics 126 207

    [8]

    Peters G W M, Baaijens F P T 1997 Journal of Non-Newtonian Fluid Mechanics 68 205

    [9]

    Peters G W M 1993 Thermorheological Modeling of Viscoelastic Materials (Dordrecht: Kluwer Academic Publishers) p1-200

    [10]

    Oliveira P J, Pinho F T, Pinto G A 1998 Journal of Non-Newtonian Fluid Mechanics 79 1

    [11]

    Yang B X, Ouyang J, Jiang T, Liu C T 2010 CMES-Computer Modeling in Engineering and Sciences 63 191

    [12]

    Harten A, Osher S 1987 SIAM Journal Numerical Analysis 24 279

    [13]

    Liu X D, Osher S, Chan T 1994 J. Comput. Phys. 115 217

    [14]

    Jiang G S, Peng D P 2000 SIAM Journal on Scientific Computing 21 2126

    [15]

    Harten A 1983 J. Comput. Phys. 49 357

    [16]

    Beaumont J P, Nagel R, Sherman R 2002 Successful Injection Molding: Process, Design and Simulation (Cincinnati: Hanser Publisher) p1-391

  • [1] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法. 物理学报, 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [2] 王行政, 杨晨静, 蔡历恒, 陈东. 基于香蕉形液晶分子自组装的纳米螺旋丝有机凝胶及其流变特性. 物理学报, 2020, 69(8): 086102. doi: 10.7498/aps.69.20200332
    [3] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间. 物理学报, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [4] 李强, 李五明. 带嵌件型腔内熔接过程的数值模拟研究. 物理学报, 2016, 65(6): 064601. doi: 10.7498/aps.65.064601
    [5] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究. 物理学报, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [6] 王浩森, 杨守文, 白彦, 陈涛, 汪宏年. 非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法. 物理学报, 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [7] 廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙. 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究. 物理学报, 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [8] 戴卿, 项楠, 程洁, 倪中华. 圆截面直流道中微粒黏弹性聚焦机理研究. 物理学报, 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [9] 张琪, 张然, 宋海明. 美式回望期权定价问题的有限体积法. 物理学报, 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [10] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应. 物理学报, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [11] 宁方立, 董梁, 张文治, 王康. 谐振管内非线性驻波的有限体积数值算法 . 物理学报, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [12] 杨斌鑫, 欧阳洁, 栗雪娟. 复杂型腔充模中纤维取向的动态模拟. 物理学报, 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
    [13] 王羽, 欧阳洁, 杨斌鑫. 分数阶Oldroyd-B黏弹性Poiseuille流的Laplace数值反演分析. 物理学报, 2010, 59(10): 6757-6763. doi: 10.7498/aps.59.6757
    [14] 熊毅, 张向军, 张晓昊, 温诗铸. 电场作用下5CB液晶分子的近壁面层黏弹性的QCM研究. 物理学报, 2010, 59(11): 7998-8004. doi: 10.7498/aps.59.7998
    [15] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型. 物理学报, 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [16] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [17] 杜启振, 杨慧珠. 裂缝性地层黏弹性地震多波波动方程. 物理学报, 2004, 53(8): 2801-2806. doi: 10.7498/aps.53.2801
    [18] 杜启振. 各向异性黏弹性介质伪谱法波场模拟. 物理学报, 2004, 53(12): 4428-4434. doi: 10.7498/aps.53.4428
    [19] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  5227
  • PDF下载量:  473
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-29
  • 修回日期:  2012-07-02
  • 刊出日期:  2012-12-05

黏弹性熔体充模流动诱导残余应力模拟

  • 1. 太原科技大学应用科学学院, 太原 030024;
  • 2. 西北工业大学理学院应用数学系, 西安 710129
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB025903)、山西省自然科学基金(批准号: 2012011019-2) 和太原科技大学博士基金(批准号: 20112011)资助的课题.

摘要: 流动诱导残余应力是塑料制品产生应力开裂以及翘曲变形等现象的重要原因, 对成型过程中流动诱导残余应力研究具有重要意义. 推导了基于黏弹性eXtended Pom-Pom本构关系的能量方程, 进而建立了描述黏弹性流体非等温充模流动的气-液两相模型. 用同位网格有限体积法进行了求解, 得到了凝固层和剪切速率分布, 给出了充填结束时影响制件力学性能的流动诱导残余应力. 结果表明, 型腔中凝固层的厚度与注射速率有关, 注射速率越大, 充模时间越短, 凝固层越薄. 在制品表层紧邻模壁的地方, 剪切速率和残余应力几乎为零; 在制品次表层的位置, 制件内剪切速率和流动残余应力也较高; 而在远离模壁的地方, 剪切速率和流动残余应力也较小.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回