搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速气流中液体横向射流的非定常特性与振荡边界模型

吴里银 王振国 李清廉 李春

引用本文:
Citation:

超声速气流中液体横向射流的非定常特性与振荡边界模型

吴里银, 王振国, 李清廉, 李春

Unsteady oscillation distribution model of liquid jet in supersonic crossflows

Wu Li-Yin, Wang Zhen-Guo, Li Qing-Lian, Li Chun
PDF
导出引用
  • 针对液体圆柱射流垂直喷入超声速横向气流中的非定常分布特性开展实验研究, 并建立穿透深度方向上的射流振荡分布模型. 利用脉冲激光背景成像方法冻结拍摄马赫2.1(Ma=2.1)气流中煤油射流/喷雾瞬态图像, 结合最大类间方差法(Otsu)和Canny算法提取瞬态图像特征, 基于统计方法并引入间歇因子()定量描述射流振荡分布特性; 通过研究多参数协同作用下的射流振荡分布规律, 提出振荡分布数学模型, 研究的参数变量包括超声速来流总压(642-1010 kPa)、 液体喷注压降(0.36-4.61 MPa)、液体喷嘴流道直径 (0.48 mm/1.0 mm/1.25 mm/1.52 mm)、距离喷嘴的流向距离(10-125 mm)以及液气动量通量比(0.11-7.49). 研究中利用射流振荡分布模型成功预测出水射流在Ma=2.1气流中的的振荡分布, 预测分布与实验结果符合良好.
    Unsteady distribution of spray is experimentally studied when a round liquid jet is injected into a supersonic crossflow vertically. An oscillation distribution model for the liquid column and spray is established. Tyndall scattering caused by the sol medium is put forward to eliminate the interference effect of monochromatic laser passing through the supersonic gas flow field. The scattering causes the disordering of laser propagation direction and phase, thus makes the planar light source uniform and eliminate the interference effect of laser at the same time. Then a uniform light source is formed and can be set as the uniform background with a pulse width of 7 ns. The camera, with dimension of CCD pixel space of 40002672 pixel, is located directly in front of planar light source, and the shooting area is between both. The frozen liquid jet/spray images with high spatiotemporal resolution are captured using the pulsed laser background imaging (PLBI) method in supersonic crossflows. And the drag phenomenon caused by the too-long exposure time in the ordinary and traditional high-speed imaging process is avoided. Based on the maximizing inter-class variance method (Otsu) and Canny method, the out boundary of liquid jet/spray are extracted from an instantaneous image. A dimensionless parameter named intermittency factor (the logogram is r) is defined and used to quantitatively analyze the oscillation distribution characteristics of jet/spray. The intermittency factor of the whole spray field could be calculated by sample probability statistic method. An empirical jet/spray oscillation distribution model, in supersonic crossflows, is summarized based on parameter studies. Various conditions are studied, including stagnation pressure range of gas (642 kPa to 1010 kPa), practical pressure range (0.36 MPa to 4.61 MPa), nozzle diameters (0.48 mm/1.0 mm/1.25 mm/1.52 mm), distances down from nozzle (10 mm to 125 mm), and jet-gas momentum flux ratio range (0.11 to 7.49). The empirical model is used to predict the oscillation distribution of water jet penetrated in a Ma2.1 supersonic crossflow. It is indicated that the predictive result matches well with the experimental result. It could be concluded that the PLBI method presented in this paper reasonably utilizes the high energy and short pulse characteristics of the laser to successfully complete the frozen image of liquid jet/spray under the condition of supersonic crossflow. The dimensionless parameter r defined in the study can be used to quantitatively analyze the oscillation distribution characteristics of jet/spray well. This study has important significance for understanding the diffusion characteristics of liquid jet in supersonic crossflows.
      通信作者: 王振国, 273501654@qq.com
    • 基金项目: 国家自然科学基金(批准号: 11472303)和新世纪优秀人才支持计划(批准号: NCET-13-0156)资助的课题.
      Corresponding author: Wang Zhen-Guo, 273501654@qq.com
    • Funds: Project was supported by the National Natural Science Foundation of China (Grant No. 11472303), and the Program for New Century Excellent Talents in University, China (Grant No. NCET-13-0156).
    [1]

    Wu L Y, Wang Z G, Li Q L, Zhang J Q 2015 Appl. Phys. Lett. 107 104103

    [2]

    Xia T J, Dong Y Q, Cao Y G 2013 Acta Phys. Sin. 62 214702 (in Chinese) [夏同军, 董永强, 曹义刚 2013 物理学报 62 214702]

    [3]

    Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 396

    [4]

    Wang L F, Ye W H, Li Y J, Meng L M 2008 Chin. Phys. B 17 3792

    [5]

    Wang Z G, Wu L Y, Li Q L, Li C 2014 Appl. Phys. Lett. 105 134102

    [6]

    Ghenai C, Sapmaz H, Lin C X 2009 Exp. Fluids 46 121

    [7]

    Kolpin M A, Horn K P, Reichenbach R E 1968 AIAA J. 6 853

    [8]

    Almeida H, Sousa J M M, Costa M 2014 Atomization and Sprays 24 81

    [9]

    Sun M B, Zhang S P, Zhao Y H, Zhao Y X, Liang J H 2013 Sci. China: Technol. Sci. 56 1989

    [10]

    Yoon H J, Hong J G, Lee C W 2011 Atomization and Sprays 21 673

    [11]

    Mashayek A, Behzad M, Ashgriz N 2011 AIAA J. 49 2407

    [12]

    Im K S, Lin K C, Lai M C, Chon M S 2011 Int. J. Autom. Technol. 12 489

    [13]

    Becker J, Hassa C 2002 Atomization and Sprays 12 49

    [14]

    Lin K C, Kennedy P J 2002 40th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 14-17, 2002 p873

    [15]

    Lin K C, Kennedy P J, Kennedy P J, Jackson T A 2004 42th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 5-8, 2004 p971

    [16]

    Dixon D R. Gruber M R, Jackson T A, Lin K C 2005 43th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 10-13, 2005 p733

    [17]

    Perurena J B, Asma C O, Theunissen R, Chazot O 2009 Exp. Fluids 46 403

    [18]

    Tong Y H 2012 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [仝毅恒 2012 硕士学位论文 (长沙: 国防科学技术大学)]

    [19]

    Yang H, Li F, Sun B G 2012 Chin. J. Aeronaut. 25 42

    [20]

    Li C, Li Q L, Wu L Y 2014 17th Annual Conference on Liquid Atomization and Spray Systems-Asia Shanghai, China, October 28-31, 2014 p1

    [21]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China: Technol. Sci. 40 695 (in Chinese) [赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 2010 中国科学: 科学技术 40 695]

    [22]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 184702]

    [23]

    Wu L Y, Wang Z G, Li Q L, Li C 2014 zl201410800056.5

    [24]

    Otsu N 1979 IEEE Trans. Syst. Man Cybernet. 9 62

    [25]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

  • [1]

    Wu L Y, Wang Z G, Li Q L, Zhang J Q 2015 Appl. Phys. Lett. 107 104103

    [2]

    Xia T J, Dong Y Q, Cao Y G 2013 Acta Phys. Sin. 62 214702 (in Chinese) [夏同军, 董永强, 曹义刚 2013 物理学报 62 214702]

    [3]

    Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 396

    [4]

    Wang L F, Ye W H, Li Y J, Meng L M 2008 Chin. Phys. B 17 3792

    [5]

    Wang Z G, Wu L Y, Li Q L, Li C 2014 Appl. Phys. Lett. 105 134102

    [6]

    Ghenai C, Sapmaz H, Lin C X 2009 Exp. Fluids 46 121

    [7]

    Kolpin M A, Horn K P, Reichenbach R E 1968 AIAA J. 6 853

    [8]

    Almeida H, Sousa J M M, Costa M 2014 Atomization and Sprays 24 81

    [9]

    Sun M B, Zhang S P, Zhao Y H, Zhao Y X, Liang J H 2013 Sci. China: Technol. Sci. 56 1989

    [10]

    Yoon H J, Hong J G, Lee C W 2011 Atomization and Sprays 21 673

    [11]

    Mashayek A, Behzad M, Ashgriz N 2011 AIAA J. 49 2407

    [12]

    Im K S, Lin K C, Lai M C, Chon M S 2011 Int. J. Autom. Technol. 12 489

    [13]

    Becker J, Hassa C 2002 Atomization and Sprays 12 49

    [14]

    Lin K C, Kennedy P J 2002 40th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 14-17, 2002 p873

    [15]

    Lin K C, Kennedy P J, Kennedy P J, Jackson T A 2004 42th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 5-8, 2004 p971

    [16]

    Dixon D R. Gruber M R, Jackson T A, Lin K C 2005 43th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 10-13, 2005 p733

    [17]

    Perurena J B, Asma C O, Theunissen R, Chazot O 2009 Exp. Fluids 46 403

    [18]

    Tong Y H 2012 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [仝毅恒 2012 硕士学位论文 (长沙: 国防科学技术大学)]

    [19]

    Yang H, Li F, Sun B G 2012 Chin. J. Aeronaut. 25 42

    [20]

    Li C, Li Q L, Wu L Y 2014 17th Annual Conference on Liquid Atomization and Spray Systems-Asia Shanghai, China, October 28-31, 2014 p1

    [21]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China: Technol. Sci. 40 695 (in Chinese) [赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 2010 中国科学: 科学技术 40 695]

    [22]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 184702]

    [23]

    Wu L Y, Wang Z G, Li Q L, Li C 2014 zl201410800056.5

    [24]

    Otsu N 1979 IEEE Trans. Syst. Man Cybernet. 9 62

    [25]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

  • [1] 杨振宇, 张元哲, 范威, 杨广杰, 韩先伟. 磁等离子体发动机中磁喷管分离过程的流体模拟. 物理学报, 2024, 73(10): 105201. doi: 10.7498/aps.73.20231862
    [2] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [3] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [4] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212345
    [5] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法. 物理学报, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [6] 金烜, 沈赤兵. 横向气膜作用下液体射流在近喷孔区域的破碎雾化特性. 物理学报, 2022, 71(11): 114701. doi: 10.7498/aps.71.20212374
    [7] 张彬, 成鹏, 李清廉, 陈慧源, 李晨阳. 液体横向射流在气膜作用下的破碎过程. 物理学报, 2021, 70(5): 054702. doi: 10.7498/aps.70.20201384
    [8] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性. 物理学报, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [9] 周曜智, 李春, 李晨阳, 李清廉. 超声速横向气流中液体射流的轨迹预测与连续液柱模型. 物理学报, 2020, 69(23): 234702. doi: 10.7498/aps.69.20200903
    [10] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [11] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究. 物理学报, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [12] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [13] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [14] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [15] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [16] 朱利, 刘尚合, 郑会志, 魏明, 胡小锋, 索罗金·安德烈. 航空发动机喷流起电机理建模与试验研究. 物理学报, 2013, 62(22): 225201. doi: 10.7498/aps.62.225201
    [17] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究. 物理学报, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [18] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟. 物理学报, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [19] 周义昌, 余超凡. 一维线性链的亚声速和超声速孤立子. 物理学报, 1992, 41(12): 2016-2023. doi: 10.7498/aps.41.2016
    [20] 庄逢甘. 查甫雷金气体的超声速运动. 物理学报, 1955, 11(2): 107-124. doi: 10.7498/aps.11.107
计量
  • 文章访问数:  6007
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-09
  • 修回日期:  2016-01-19
  • 刊出日期:  2016-05-05

/

返回文章
返回