搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析

彭傲平 李志辉 吴俊林 蒋新宇

引用本文:
Citation:

含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析

彭傲平, 李志辉, 吴俊林, 蒋新宇

Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation

Peng Ao-Ping, Li Zhi-Hui, Wu Jun-Lin, Jiang Xin-Yu
PDF
导出引用
  • 为模拟研究高温高马赫数下多原子气体内能激发对跨流域非平衡流动的影响,将转动能、振动能分别作为气体分子速度分布函数的自变量,把转动能和振动能处理为连续分布的能量模式,将Boltzmann方程的碰撞项分解成弹性碰撞项和非弹性碰撞项,同时将非弹性碰撞按一定松弛速率分解为平动-转动能松弛过程和平动-转动-振动能松弛过程,构造了一类考虑振动能激发的Boltzmann模型方程,并证明了其守恒性和H定理.基于内部能量变量对分布函数无穷积分,引入三个约化速度分布函数,得到一组考虑振动能激发的约化速度分布函数控制方程组,使用离散速度坐标法,基于LU-SGS隐式格式和有限体积法求解离散速度分布函数,建立含振动能激发的气体动理论统一算法.通过开展高稀薄流到连续流圆柱绕流问题统一算法与直接模拟蒙特卡罗法模拟结果对比分析,特别是过渡流区平动、转动、振动非平衡效应对绕流流场与物面力热特性的影响机制,证实了所建立的含振动能激发的Boltzmann模型方程及气体动理论统一算法的准确可靠性.
    With the increase of temperature in flow field,gas molecules possess not only rotational degree of freedom,but also vibrational energy excitation.In order to simulate and study the influence of internal energy excitation on polyatomic gas flow with high temperature and high Mach number,according to the general Boltzmann equation,we consider the rotational and vibrational energy modes as the independent variables of gas molecular velocity distribution function.It is assumed that the rotational and vibrational energy modes are described by continuous distribution with degree of freedom and temperature.Based on the Borgnakke-Larsen collision model used in direct simulation Monte Carlo (DSMC) method, the collision term of Boltzmann equation with internal energy excitation is divided into elastic and inelastic collision terms.The inelastic collision is decomposed into translational-rotational energy relaxation and translational-rotationalvibrational energy relaxation according to a certain relaxation rate obtained from the reciprocalities of rotational and vibrational collisions numbers per one elastic collision.Then a kind of Boltzmann model equation considering the excitation of vibrational energy is constructed.For showing the consistency between the present model equation and Boltzmann equation,the conservation of summational invariants and the H-theorem of this model are proved.When solving the present model equation with numerical methods,because of the continuous energy modes,it is difficult to simulate this model equation directly.In this paper,three control equations are derived and solved by the LU-SGS (lower-upper symmetric Gauss-Seidel) method,and the cell-centered finite volume method with multi-block patched grid technique in physical space.As a result,these gas-kinetic unified algorithm (GKUA) with vibrational energy excitation has been developed.Results are presented for N2 with different Knudsen numbers around cylinder from continuum to rarefied gas flow by using the present Boltzmann model equation,GKUA with simple gas model,and DSMC method. Very good agreement between the present model and DSMC results is obtained,which shows that the accuracy and reliability of the present model.Comparing the translational,rotational,vibrational,and total temperatures computed by different methods,the effects of the rotational and vibrational degrees of freedom are demonstrated.For the simple gas model,the translational temperature is much higher than those for the other two models with internal energy excitation. At the same time,the distance from shock wave to wall for the simple gas model is about twice those for the other two models.On the other hand,the obtained aerodynamic force coefficients of the cylinder are increasing according to the sequence from the simple gas model to the rotational energy excitation model to the vibrational energy excitation model, but the variation range is very small.By reducing the gas characteristic vibrational temperature,the temperature after the shock wave is much lower,and the heat flux declines evidently at the stagnation point with the same temperature as the wall temperature.This implies that with the wall temperature increasing the heat flux declines.
      通信作者: 李志辉, zhli0097@x263.net
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB744100)和国家自然科学基金(批准号:11325212,91016027)资助的课题.
      Corresponding author: Li Zhi-Hui, zhli0097@x263.net
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB744100) and the National Natural Science Foundation of China (Grant Nos. 11325212, 91016027).
    [1]

    Votta R, Schettino A, Bonfiglioli A 2013 Aerosp. Sci. Technol. 25 253

    [2]

    Shevyrin A A, Vashchenkov P V, Bondar Y A, Ivanov M S 2014 Proceedings of the 29th International Symposium on Rarefied Gas Dynamics Xi' an, China, July 13-18, 2014 p155

    [3]

    Bird G A 1994 Molecular Gas Dynamics and The Direct Simulation of Gas Flows (Oxford:Oxford University Press) pp50-54

    [4]

    Shen Q 2003 Rarefied Gas Dynamics (Beijing:National Defense Industry Press) pp38, 83-88(in Chinese)[沈青2003稀薄气体动力学(北京:国防工业出版社)第38, 8388页]

    [5]

    Struchtrup H 2005 Macroscopic Transport Equations for Rarefied Gas Flows (Berlin:Springer) p27

    [6]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-uniform Gases (Cambridge:Cambridge University Press) pp46-48

    [7]

    Cercignani C 1988 The Boltzmann Equation and Its Applications (New York:Springer Science Business Media) pp64-66

    [8]

    Kremer G M 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases (Berlin:Springer) p37

    [9]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511

    [10]

    Holway L H 1966 Phys. Fluids 9 1658

    [11]

    Shakhov E M 1968 Fluid Dynam. 3 95

    [12]

    Yang J Y, Huang J C 1995 J. Comput. Phys. 120 232

    [13]

    Li Z H, Zhang H X 2002 Acta Mech. Sin. 34 145 (in Chinese)[李志辉, 张涵信2002力学学报34 145]

    [14]

    Olga I R, Alexey P P, Irina A G 2013 Comput. Fluids 80 71

    [15]

    Titarev V, Dumbser M, Utyuzhnikov S 2014 J. Comput. Phys. 256 17

    [16]

    Li Z H, Peng A P, Fang F, Li S X, Zhang S Y 2015 Acta Phys. Sin. 64 224703 (in Chinese)[李志辉, 彭傲平, 方方, 李四新, 张顺玉2015物理学报64 224703]

    [17]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747

    [18]

    Cai Z N, Li R 2014 J. Comput. Phys. 267 63

    [19]

    Li Z H, Peng A P, Zhang H X, Yang J Y 2015 Prog. Aerosp. Sci. 74 81

    [20]

    Li Z H 2001 Ph. D. Dissertation (Mianyang:China Aerodynamics Research and Development Center) (in Chinese)[李志辉2001博士学位论文(绵阳:中国空气动力研究与发展中心)]

    [21]

    Li Z H, Zhang H X 2004 J. Comput. Phys. 193 708

    [22]

    Li Z H, Zhang H X 2005 Adv. Mech. Sin. 35 559 (in Chinese)[李志辉, 张涵信2005力学进展35 559]

    [23]

    Li Z H, Zhang H X 2007 Acta Mech. Sin.:PRC 23 121

    [24]

    Li Z H, Zhang H X 2009 J. Comput. Phys. 228 1116

    [25]

    Li Z H, Peng A P, Zhang H X, Deng X G 2011 Sci. Sin.:Phys. Mech. Astron. 54 1687

    [26]

    Peng A P, Li Z H, Wu J L, Jiang X Y 2016 Chin. J. Theor. Appl. Mech. 48 95 (in Chinese)[彭傲平, 李志辉, 吴俊林, 蒋新宇2016力学学报48 95]

    [27]

    Peng A P, Li Z H, Wu J L, Jiang X Y 2016 J. Comput. Phys. 327 919

    [28]

    Li Z H, Wu J L, Jiang X Y, Ma Q 2015 Acta Aeronaut. Astron. Sin. 36 201 (in Chinese)[李志辉, 吴俊林, 蒋新宇, 马强2015航空学报36 201]

    [29]

    Li H Y 2007 Ph. D. Dissertation (Mianyang:China Aerodynamics Research and Development Center) (in Chinese)[李海燕2007博士学位论文(绵阳:中国空气动力研究与发展中心)]

    [30]

    Li H Y, Li Z H, Luo W Q, Li M 2014 Sci. Sin.:Phys. Mech. Astron. 44 194(in Chinese)[李海燕, 李志辉, 罗万清, 李明2014中国科学:物理学力学天文学44 194]

    [31]

    Boyd I D, Josyula E 2011 Phys. Fluids 23 057101

    [32]

    Yang H S 2013 M. S. Thesis (Shanghai:Shanghai Jiaotong University) (in Chinese)[杨浩森2013硕士学位论文(上海:上海交通大学)]

    [33]

    Li Z, Zhu T, Levin D A 2013 AIAA Paper AIAA 2013-1201

    [34]

    Wang C S, Uhlenbeck G E, Boer J D 1964 Studies in Statistical Mechanics (Amsterdam:North-Holland Publishing Company) p2

    [35]

    Wang C S (translated by Ying C T, Zhang C Z) 1994 The Kinetic Theory of a Gas (Beijing:Atom Energy Press) pp71-75(in Chinese)[王承书著(应纯同, 张存镇译) 1994气体分子运动论(北京:原子出版社)第7175页]

    [36]

    Morse T F 1964 Phys. Fluids 7 2012

    [37]

    Andries P, Le Tallec P, Perlat J P, Perthame B 2000 Eur. J. Mech. B:Fluid 19 813

    [38]

    Brull S, Schneider J 2009 Continuum Mech. Thermodyn. 20 489

    [39]

    Rykov V A 1975 Fluid Dynam.+ 10 959

    [40]

    Rykov V A, Titarev V A, Shakhov E M 2008 Fluid Dynam.+ 43 316

    [41]

    Rykov V A, Titarev V A, Shakhov E M 2007 Comp. Math. Math. Phys.+ 47 136

    [42]

    Wu L, White C, Thomas J S, Reese J M, Zhang Y H 2015 J. Fluid Mech. 763 24

    [43]

    Tantos C, Valougeorgis D, Frezzotti A 2015 Int. J. Heat Mass Trans. 88 636

    [44]

    Tantos C, Ghiroldi G P, Valougeorgis D, Frezzotti A 2016 Int. J. Heat Mass Trans. 102 162

    [45]

    Allu P, Mazumder S 2016 Int. J. Heat Mass Tran. 100 165

    [46]

    Li Z H, Jiang X Y, Wu J L, Peng A P 2014 Chin. J. Theor. Appl. Mech. 46 336 (in Chinese)[李志辉, 蒋新宇, 吴俊林, 彭傲平2014力学学报46 336]

    [47]

    Wu J L, Peng A P, Li Z H, Fang M 2015 Acta Aerodynam. Sin. 33 5(in Chinese)[吴俊林, 彭傲平, 李志辉, 方明2015空气动力学学报33 5]

    [48]

    Jiang X Y, Li Z H, Wu J L 2014 Chin. J. Comput. Phys. 31 403(in Chinese)[蒋新宇, 李志辉, 吴俊林2014计算物理31 403]

    [49]

    Xu A G, Zhang G C, Li Y J, Li H 2014 Prog. Phys. Sin. 34 136(in Chinese)[许爱国, 张广财, 李英骏, 李华2014物理学进展34 136]

    [50]

    Ying C T 1990 Theory and Application of Gases Transport (Beijing:Tsinghua University Press) p62(in Chinese)[应纯同1990气体输运理论及应用(北京:清华大学出版社)第62页]

    [51]

    Laurent B, Brnice G, Milana P C, Francesco S 2013 Proc. Appl. Math. Mech. 13 353

    [52]

    Bird G A 2005 Proceedings of the 24th International Symposium on Rarefied Gas Dynamics Melville, Canada 2005 p541

  • [1]

    Votta R, Schettino A, Bonfiglioli A 2013 Aerosp. Sci. Technol. 25 253

    [2]

    Shevyrin A A, Vashchenkov P V, Bondar Y A, Ivanov M S 2014 Proceedings of the 29th International Symposium on Rarefied Gas Dynamics Xi' an, China, July 13-18, 2014 p155

    [3]

    Bird G A 1994 Molecular Gas Dynamics and The Direct Simulation of Gas Flows (Oxford:Oxford University Press) pp50-54

    [4]

    Shen Q 2003 Rarefied Gas Dynamics (Beijing:National Defense Industry Press) pp38, 83-88(in Chinese)[沈青2003稀薄气体动力学(北京:国防工业出版社)第38, 8388页]

    [5]

    Struchtrup H 2005 Macroscopic Transport Equations for Rarefied Gas Flows (Berlin:Springer) p27

    [6]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-uniform Gases (Cambridge:Cambridge University Press) pp46-48

    [7]

    Cercignani C 1988 The Boltzmann Equation and Its Applications (New York:Springer Science Business Media) pp64-66

    [8]

    Kremer G M 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases (Berlin:Springer) p37

    [9]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511

    [10]

    Holway L H 1966 Phys. Fluids 9 1658

    [11]

    Shakhov E M 1968 Fluid Dynam. 3 95

    [12]

    Yang J Y, Huang J C 1995 J. Comput. Phys. 120 232

    [13]

    Li Z H, Zhang H X 2002 Acta Mech. Sin. 34 145 (in Chinese)[李志辉, 张涵信2002力学学报34 145]

    [14]

    Olga I R, Alexey P P, Irina A G 2013 Comput. Fluids 80 71

    [15]

    Titarev V, Dumbser M, Utyuzhnikov S 2014 J. Comput. Phys. 256 17

    [16]

    Li Z H, Peng A P, Fang F, Li S X, Zhang S Y 2015 Acta Phys. Sin. 64 224703 (in Chinese)[李志辉, 彭傲平, 方方, 李四新, 张顺玉2015物理学报64 224703]

    [17]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747

    [18]

    Cai Z N, Li R 2014 J. Comput. Phys. 267 63

    [19]

    Li Z H, Peng A P, Zhang H X, Yang J Y 2015 Prog. Aerosp. Sci. 74 81

    [20]

    Li Z H 2001 Ph. D. Dissertation (Mianyang:China Aerodynamics Research and Development Center) (in Chinese)[李志辉2001博士学位论文(绵阳:中国空气动力研究与发展中心)]

    [21]

    Li Z H, Zhang H X 2004 J. Comput. Phys. 193 708

    [22]

    Li Z H, Zhang H X 2005 Adv. Mech. Sin. 35 559 (in Chinese)[李志辉, 张涵信2005力学进展35 559]

    [23]

    Li Z H, Zhang H X 2007 Acta Mech. Sin.:PRC 23 121

    [24]

    Li Z H, Zhang H X 2009 J. Comput. Phys. 228 1116

    [25]

    Li Z H, Peng A P, Zhang H X, Deng X G 2011 Sci. Sin.:Phys. Mech. Astron. 54 1687

    [26]

    Peng A P, Li Z H, Wu J L, Jiang X Y 2016 Chin. J. Theor. Appl. Mech. 48 95 (in Chinese)[彭傲平, 李志辉, 吴俊林, 蒋新宇2016力学学报48 95]

    [27]

    Peng A P, Li Z H, Wu J L, Jiang X Y 2016 J. Comput. Phys. 327 919

    [28]

    Li Z H, Wu J L, Jiang X Y, Ma Q 2015 Acta Aeronaut. Astron. Sin. 36 201 (in Chinese)[李志辉, 吴俊林, 蒋新宇, 马强2015航空学报36 201]

    [29]

    Li H Y 2007 Ph. D. Dissertation (Mianyang:China Aerodynamics Research and Development Center) (in Chinese)[李海燕2007博士学位论文(绵阳:中国空气动力研究与发展中心)]

    [30]

    Li H Y, Li Z H, Luo W Q, Li M 2014 Sci. Sin.:Phys. Mech. Astron. 44 194(in Chinese)[李海燕, 李志辉, 罗万清, 李明2014中国科学:物理学力学天文学44 194]

    [31]

    Boyd I D, Josyula E 2011 Phys. Fluids 23 057101

    [32]

    Yang H S 2013 M. S. Thesis (Shanghai:Shanghai Jiaotong University) (in Chinese)[杨浩森2013硕士学位论文(上海:上海交通大学)]

    [33]

    Li Z, Zhu T, Levin D A 2013 AIAA Paper AIAA 2013-1201

    [34]

    Wang C S, Uhlenbeck G E, Boer J D 1964 Studies in Statistical Mechanics (Amsterdam:North-Holland Publishing Company) p2

    [35]

    Wang C S (translated by Ying C T, Zhang C Z) 1994 The Kinetic Theory of a Gas (Beijing:Atom Energy Press) pp71-75(in Chinese)[王承书著(应纯同, 张存镇译) 1994气体分子运动论(北京:原子出版社)第7175页]

    [36]

    Morse T F 1964 Phys. Fluids 7 2012

    [37]

    Andries P, Le Tallec P, Perlat J P, Perthame B 2000 Eur. J. Mech. B:Fluid 19 813

    [38]

    Brull S, Schneider J 2009 Continuum Mech. Thermodyn. 20 489

    [39]

    Rykov V A 1975 Fluid Dynam.+ 10 959

    [40]

    Rykov V A, Titarev V A, Shakhov E M 2008 Fluid Dynam.+ 43 316

    [41]

    Rykov V A, Titarev V A, Shakhov E M 2007 Comp. Math. Math. Phys.+ 47 136

    [42]

    Wu L, White C, Thomas J S, Reese J M, Zhang Y H 2015 J. Fluid Mech. 763 24

    [43]

    Tantos C, Valougeorgis D, Frezzotti A 2015 Int. J. Heat Mass Trans. 88 636

    [44]

    Tantos C, Ghiroldi G P, Valougeorgis D, Frezzotti A 2016 Int. J. Heat Mass Trans. 102 162

    [45]

    Allu P, Mazumder S 2016 Int. J. Heat Mass Tran. 100 165

    [46]

    Li Z H, Jiang X Y, Wu J L, Peng A P 2014 Chin. J. Theor. Appl. Mech. 46 336 (in Chinese)[李志辉, 蒋新宇, 吴俊林, 彭傲平2014力学学报46 336]

    [47]

    Wu J L, Peng A P, Li Z H, Fang M 2015 Acta Aerodynam. Sin. 33 5(in Chinese)[吴俊林, 彭傲平, 李志辉, 方明2015空气动力学学报33 5]

    [48]

    Jiang X Y, Li Z H, Wu J L 2014 Chin. J. Comput. Phys. 31 403(in Chinese)[蒋新宇, 李志辉, 吴俊林2014计算物理31 403]

    [49]

    Xu A G, Zhang G C, Li Y J, Li H 2014 Prog. Phys. Sin. 34 136(in Chinese)[许爱国, 张广财, 李英骏, 李华2014物理学进展34 136]

    [50]

    Ying C T 1990 Theory and Application of Gases Transport (Beijing:Tsinghua University Press) p62(in Chinese)[应纯同1990气体输运理论及应用(北京:清华大学出版社)第62页]

    [51]

    Laurent B, Brnice G, Milana P C, Francesco S 2013 Proc. Appl. Math. Mech. 13 353

    [52]

    Bird G A 2005 Proceedings of the 24th International Symposium on Rarefied Gas Dynamics Melville, Canada 2005 p541

  • [1] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS电子基态及激发态势能曲线和振动能级的理论研究. 物理学报, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [2] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何. 物理学报, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [3] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS 电子基态及激发态的势能曲线和振动能级的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211441
    [4] 陈延辉, 谢伟博, 代克杰, 高玲肖, 卢山, 陈鑫, 李宇航, 牟笑静. 非谐振式低频电磁-摩擦电复合振动能收集器. 物理学报, 2020, 69(20): 208402. doi: 10.7498/aps.69.20200793
    [5] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究. 物理学报, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [6] 皮兴才, 朱炼华, 李志辉, 彭傲平, 张勇豪. 基于宏观方程数值本构关系的气体动理论加速收敛方法. 物理学报, 2020, 69(20): 204702. doi: 10.7498/aps.69.20200602
    [7] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [8] 张素侠, 陈纬庭. 基于标架场理论的完整系统Boltzmann-Hamel方程简化方法研究. 物理学报, 2018, 67(6): 060201. doi: 10.7498/aps.67.20172235
    [9] 李志辉, 彭傲平, 方方, 李四新, 张顺玉. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究. 物理学报, 2015, 64(22): 224703. doi: 10.7498/aps.64.224703
    [10] 何郁波, 林晓艳, 董晓亮. 应用格子Boltzmann模型模拟一类二维偏微分方程. 物理学报, 2013, 62(19): 194701. doi: 10.7498/aps.62.194701
    [11] 解加芳, 庞硕, 邹杰涛, 李国富. 非完整系统Boltzmann-Hamel方程的Birkhoff化及其广义辛算法. 物理学报, 2012, 61(23): 230201. doi: 10.7498/aps.61.230201
    [12] 石雁祥, 吴健, 葛德彪. 弱电离尘埃等离子体的介电张量研究. 物理学报, 2009, 58(8): 5507-5512. doi: 10.7498/aps.58.5507
    [13] 宋海峰, 刘海风. 金属铍热力学性质的理论研究. 物理学报, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [14] 王红艳, 段文山. 对含有非热力学平衡离子的尘埃等离子体中孤波特性的理论研究. 物理学报, 2007, 56(7): 3977-3983. doi: 10.7498/aps.56.3977
    [15] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [16] 赵 颖, 季仲贞, 冯 涛. 用格子Boltzmann模型模拟垂直平板间的热对流. 物理学报, 2004, 53(3): 671-675. doi: 10.7498/aps.53.671
    [17] 耿华运, 吴强, 谭华. 热力学物态方程参数的统计力学表示. 物理学报, 2001, 50(7): 1334-1339. doi: 10.7498/aps.50.1334
    [18] 李富斌. 非平衡涨落问题的微观唯象分析理论(Ⅰ)——一种新的广义不可逆热力学理论与热涨落中涨落—耗散表示式的非平衡修正. 物理学报, 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
    [19] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅳ)——向非Maxwell分子的推广. 物理学报, 1985, 34(2): 225-234. doi: 10.7498/aps.34.225
    [20] 王竹溪. 热力学中之一问题(正误). 物理学报, 1947, 7(1): 49-52. doi: 10.7498/aps.7.49
计量
  • 文章访问数:  6806
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-05-19
  • 刊出日期:  2017-10-05

/

返回文章
返回