搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称纳米通道内流体流动与传热的分子动力学

王胜 徐进良 张龙艳

引用本文:
Citation:

非对称纳米通道内流体流动与传热的分子动力学

王胜, 徐进良, 张龙艳

Molecular dynamics simulation of fluid flow and heat transfer in an asymmetric nanochannel

Wang Sheng, Xu Jin-Liang, Zhang Long-Yan
PDF
导出引用
  • 采用分子动力学方法研究了流体在非对称浸润性粗糙纳米通道内的流动与传热过程,分析了两侧壁面浸润性不对称对流体速度滑移和温度阶跃的影响,以及非对称浸润性组合对流体内部热量传递的影响.研究结果表明,纳米通道主流区域的流体速度在外力作用下呈抛物线分布,但是纳米通道上下壁面浸润性不对称导致速度分布不呈中心对称,同时通道壁面的纳米结构也会限制流体的流动.流体在流动过程中产生黏性耗散,使流体温度升高.增强冷壁面的疏水性对近热壁面区域的流体速度几乎没有影响,滑移速度和滑移长度基本不变,始终为锁定边界,但是会导致近冷壁面区域的流体速度逐渐增大,对应的滑移速度和滑移长度随之增大.此时,近冷壁面区域的流体温度逐渐超过近热壁面区域的流体温度,流体出现反转温度分布,流体内部热流逆向传递.随着两侧壁面浸润性不对称程度增加,流体反转温度分布更加明显.
    Fluid flow and heat transfer in a nanochannel may depart from the traditional behavior due to the scale effect, and the velocity slip and temperature jump at the fluid-solid interface must be taken into account. A lot of papers about fluid flows in nanochannels with the same wettability at two surfaces have been published. It is necessary to investigate fluid flow and heat transfer in nanochannels with the asymmetric wettability by the molecular dynamics method. The fluid velocity and temperature distributions, interfacial velocity slip and temperature jump in a rough nanochannel are evaluated. The effects of asymmetric wettability on the velocity slip, temperature jump and internal fluid heat transfer are analyzed. The results indicate that the velocity of the fluid flow under an external force in a nanochannel in a bulk region is of a parabolic distribution, but the parabolic distribution is not centrosymmetric because of the centrosymmetric density profile. The difference in density distribution can affect the fluid flow. Viscous dissipation due to shear flow will increase the fluid temperature. The range that is affected by the interaction between solid and liquid is small. So the wettability of the cold wall hardly affects the velocity of the fluid near the hot wall, and the slip velocity is almost constant. At this time, the negative slip will take place at the fluid-solid interface near the hot wall. But the velocity of the fluid near the cold wall comes up with the increasing hydrophobicity of the cold wall, and the slip velocity increases. The temperature jump on both sides of interface increases with the increasing hydrophobicity of the cold wall, but the degree of temperature jump at a liquid-cold solid interface is higher than that at a liquid-hot solid interface. Then the fluid temperature near the cold wall gradually exceeds the fluid temperature near the hot wall. The internal heat flow of the fluid will be reversed. The inverted temperature profile of the fluid will appear. The inverted temperature profile becomes more obvious when the degree of asymmetric wettability increases.
      通信作者: 徐进良, xjl@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51436004)资助的课题.
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51436004).
    [1]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501

    [2]

    Zhang H W, Zhang Z Q, Ye H F 2012 Microfluid. Nanofluid. 12 107

    [3]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese)[曹炳阳, 陈民, 过增元2006物理学报55 5305]

    [4]

    Cao B Y, Chen M, Guo Z Y 2003 J. Eng. Therm. 24 670 (in Chinese)[曹炳阳, 陈民, 过增元2003工程热物理学报24 670]

    [5]

    Xu C, He Y L, Wang Y 2005 J. Eng. Therm. 26 912 (in Chinese)[徐超, 何雅玲, 王勇2005工程热物理学报26 912]

    [6]

    Kim B H, Beskok A, Cagin T 2008 Microfluid. Nanofluid. 5 551

    [7]

    Kim B H, Beskok A, Cagin T 2008 J. Chem. Phys. 129 174701

    [8]

    Barisik M, Beskok A 2014 Int. J. Therm. Sci. 77 47

    [9]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [10]

    Yang S C 2006 Microfluid. Nanofluid. 2 501

    [11]

    Zhang C B, Chen Y P 2014 Chem. Eng. Process. 85 203

    [12]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [13]

    Sun J, Wang W, Wang H S 2013 J. Chem. Phys. 138 234703

    [14]

    Sun J, Wang W, Wang H S 2013 Phys. Rev. E 87 023020

    [15]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese)[张程宾, 许兆林, 陈永平2014物理学报63 214706]

    [16]

    Zhang X Y, Zhu Y X, Granick S 2002 Science 295 663

    [17]

    Sun T L, Lin F, Gao X F, Jiang L 2005 Acc. Chem. Res. 38 644

    [18]

    Chen Q W, Meng L Y, Li Q K, Wang D, Guo W, Shuai Z G, Jiang L 2011 Small 7 2225

    [19]

    Murad S, Puri I K 2012 J. Chem. Phys 137 081101

    [20]

    Priezjev N V 2007 J. Chem. Phys. 127 144708

  • [1]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501

    [2]

    Zhang H W, Zhang Z Q, Ye H F 2012 Microfluid. Nanofluid. 12 107

    [3]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese)[曹炳阳, 陈民, 过增元2006物理学报55 5305]

    [4]

    Cao B Y, Chen M, Guo Z Y 2003 J. Eng. Therm. 24 670 (in Chinese)[曹炳阳, 陈民, 过增元2003工程热物理学报24 670]

    [5]

    Xu C, He Y L, Wang Y 2005 J. Eng. Therm. 26 912 (in Chinese)[徐超, 何雅玲, 王勇2005工程热物理学报26 912]

    [6]

    Kim B H, Beskok A, Cagin T 2008 Microfluid. Nanofluid. 5 551

    [7]

    Kim B H, Beskok A, Cagin T 2008 J. Chem. Phys. 129 174701

    [8]

    Barisik M, Beskok A 2014 Int. J. Therm. Sci. 77 47

    [9]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [10]

    Yang S C 2006 Microfluid. Nanofluid. 2 501

    [11]

    Zhang C B, Chen Y P 2014 Chem. Eng. Process. 85 203

    [12]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [13]

    Sun J, Wang W, Wang H S 2013 J. Chem. Phys. 138 234703

    [14]

    Sun J, Wang W, Wang H S 2013 Phys. Rev. E 87 023020

    [15]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese)[张程宾, 许兆林, 陈永平2014物理学报63 214706]

    [16]

    Zhang X Y, Zhu Y X, Granick S 2002 Science 295 663

    [17]

    Sun T L, Lin F, Gao X F, Jiang L 2005 Acc. Chem. Res. 38 644

    [18]

    Chen Q W, Meng L Y, Li Q K, Wang D, Guo W, Shuai Z G, Jiang L 2011 Small 7 2225

    [19]

    Murad S, Puri I K 2012 J. Chem. Phys 137 081101

    [20]

    Priezjev N V 2007 J. Chem. Phys. 127 144708

  • [1] 潘文韬, 文琳, 李姗姗, 潘振海. Y型微通道内气泡非对称破裂行为的数值研究. 物理学报, 2022, 71(2): 024701. doi: 10.7498/aps.71.20210832
    [2] 贺传晖, 刘高洁, 娄钦. 大密度比气泡在含非对称障碍物微通道内的运动行为. 物理学报, 2021, 70(24): 244701. doi: 10.7498/aps.70.20211328
    [3] 潘文韬, 李姗姗, 文琳, 潘振海. Y型微通道内气泡非对称破裂行为的数值研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210832
    [4] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [5] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究. 物理学报, 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [6] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [7] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [8] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [9] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [10] 谢天婷, 邓科, 罗懋康. 二维非对称周期时移波状通道中的粒子定向输运问题. 物理学报, 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [11] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究. 物理学报, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [12] 王郁武, 韦相和, 朱兆辉. 基于非对称量子通道受控QOT量子投票协议. 物理学报, 2013, 62(16): 160302. doi: 10.7498/aps.62.160302
    [13] 王增, 董刚, 杨银堂, 李建伟. 考虑温度分布效应的非对称RLC树时钟偏差研究. 物理学报, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [14] 黎浩峰, 陈文振, 张帆, 商学利. 有温度反馈阶跃引入负反应性瞬变的解. 物理学报, 2010, 59(4): 2375-2380. doi: 10.7498/aps.59.2375
    [15] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 非对称碳氢扩散火焰内烟黑浓度与温度联合重建模型研究. 物理学报, 2008, 57(12): 7928-7936. doi: 10.7498/aps.57.7928
    [16] 额尔敦朝鲁, 于若蒙. 非对称量子点中磁极化子性质的磁场和温度依赖性. 物理学报, 2008, 57(11): 7100-7107. doi: 10.7498/aps.57.7100
    [17] 曹炳阳, 陈 民, 过增元. 纳米通道内液体流动的滑移现象. 物理学报, 2006, 55(10): 5305-5310. doi: 10.7498/aps.55.5305
    [18] 陈文振, 朱 波, 黎浩峰. 小阶跃反应性输入时点堆中子动力学方程的解析解. 物理学报, 2004, 53(8): 2486-2489. doi: 10.7498/aps.53.2486
    [19] 张秀淼, 包宗明, 苏九令. 阶跃电压法确定产生寿命和表面产生速度. 物理学报, 1983, 32(2): 239-246. doi: 10.7498/aps.32.239
    [20] 胡宁. 圆柱体后及轴对称体后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 1-29. doi: 10.7498/aps.5.1
计量
  • 文章访问数:  5617
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-05
  • 修回日期:  2017-06-04
  • 刊出日期:  2017-10-05

/

返回文章
返回