-
采用分子动力学方法研究了流体在非对称浸润性粗糙纳米通道内的流动与传热过程,分析了两侧壁面浸润性不对称对流体速度滑移和温度阶跃的影响,以及非对称浸润性组合对流体内部热量传递的影响.研究结果表明,纳米通道主流区域的流体速度在外力作用下呈抛物线分布,但是纳米通道上下壁面浸润性不对称导致速度分布不呈中心对称,同时通道壁面的纳米结构也会限制流体的流动.流体在流动过程中产生黏性耗散,使流体温度升高.增强冷壁面的疏水性对近热壁面区域的流体速度几乎没有影响,滑移速度和滑移长度基本不变,始终为锁定边界,但是会导致近冷壁面区域的流体速度逐渐增大,对应的滑移速度和滑移长度随之增大.此时,近冷壁面区域的流体温度逐渐超过近热壁面区域的流体温度,流体出现反转温度分布,流体内部热流逆向传递.随着两侧壁面浸润性不对称程度增加,流体反转温度分布更加明显.Fluid flow and heat transfer in a nanochannel may depart from the traditional behavior due to the scale effect, and the velocity slip and temperature jump at the fluid-solid interface must be taken into account. A lot of papers about fluid flows in nanochannels with the same wettability at two surfaces have been published. It is necessary to investigate fluid flow and heat transfer in nanochannels with the asymmetric wettability by the molecular dynamics method. The fluid velocity and temperature distributions, interfacial velocity slip and temperature jump in a rough nanochannel are evaluated. The effects of asymmetric wettability on the velocity slip, temperature jump and internal fluid heat transfer are analyzed. The results indicate that the velocity of the fluid flow under an external force in a nanochannel in a bulk region is of a parabolic distribution, but the parabolic distribution is not centrosymmetric because of the centrosymmetric density profile. The difference in density distribution can affect the fluid flow. Viscous dissipation due to shear flow will increase the fluid temperature. The range that is affected by the interaction between solid and liquid is small. So the wettability of the cold wall hardly affects the velocity of the fluid near the hot wall, and the slip velocity is almost constant. At this time, the negative slip will take place at the fluid-solid interface near the hot wall. But the velocity of the fluid near the cold wall comes up with the increasing hydrophobicity of the cold wall, and the slip velocity increases. The temperature jump on both sides of interface increases with the increasing hydrophobicity of the cold wall, but the degree of temperature jump at a liquid-cold solid interface is higher than that at a liquid-hot solid interface. Then the fluid temperature near the cold wall gradually exceeds the fluid temperature near the hot wall. The internal heat flow of the fluid will be reversed. The inverted temperature profile of the fluid will appear. The inverted temperature profile becomes more obvious when the degree of asymmetric wettability increases.
-
Keywords:
- asymmetric wettability /
- velocity slip /
- temperature jump /
- rough nanochannel
[1] Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501
[2] Zhang H W, Zhang Z Q, Ye H F 2012 Microfluid. Nanofluid. 12 107
[3] Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese)[曹炳阳, 陈民, 过增元2006物理学报55 5305]
[4] Cao B Y, Chen M, Guo Z Y 2003 J. Eng. Therm. 24 670 (in Chinese)[曹炳阳, 陈民, 过增元2003工程热物理学报24 670]
[5] Xu C, He Y L, Wang Y 2005 J. Eng. Therm. 26 912 (in Chinese)[徐超, 何雅玲, 王勇2005工程热物理学报26 912]
[6] Kim B H, Beskok A, Cagin T 2008 Microfluid. Nanofluid. 5 551
[7] Kim B H, Beskok A, Cagin T 2008 J. Chem. Phys. 129 174701
[8] Barisik M, Beskok A 2014 Int. J. Therm. Sci. 77 47
[9] Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638
[10] Yang S C 2006 Microfluid. Nanofluid. 2 501
[11] Zhang C B, Chen Y P 2014 Chem. Eng. Process. 85 203
[12] Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112
[13] Sun J, Wang W, Wang H S 2013 J. Chem. Phys. 138 234703
[14] Sun J, Wang W, Wang H S 2013 Phys. Rev. E 87 023020
[15] Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese)[张程宾, 许兆林, 陈永平2014物理学报63 214706]
[16] Zhang X Y, Zhu Y X, Granick S 2002 Science 295 663
[17] Sun T L, Lin F, Gao X F, Jiang L 2005 Acc. Chem. Res. 38 644
[18] Chen Q W, Meng L Y, Li Q K, Wang D, Guo W, Shuai Z G, Jiang L 2011 Small 7 2225
[19] Murad S, Puri I K 2012 J. Chem. Phys 137 081101
[20] Priezjev N V 2007 J. Chem. Phys. 127 144708
-
[1] Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501
[2] Zhang H W, Zhang Z Q, Ye H F 2012 Microfluid. Nanofluid. 12 107
[3] Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese)[曹炳阳, 陈民, 过增元2006物理学报55 5305]
[4] Cao B Y, Chen M, Guo Z Y 2003 J. Eng. Therm. 24 670 (in Chinese)[曹炳阳, 陈民, 过增元2003工程热物理学报24 670]
[5] Xu C, He Y L, Wang Y 2005 J. Eng. Therm. 26 912 (in Chinese)[徐超, 何雅玲, 王勇2005工程热物理学报26 912]
[6] Kim B H, Beskok A, Cagin T 2008 Microfluid. Nanofluid. 5 551
[7] Kim B H, Beskok A, Cagin T 2008 J. Chem. Phys. 129 174701
[8] Barisik M, Beskok A 2014 Int. J. Therm. Sci. 77 47
[9] Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638
[10] Yang S C 2006 Microfluid. Nanofluid. 2 501
[11] Zhang C B, Chen Y P 2014 Chem. Eng. Process. 85 203
[12] Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112
[13] Sun J, Wang W, Wang H S 2013 J. Chem. Phys. 138 234703
[14] Sun J, Wang W, Wang H S 2013 Phys. Rev. E 87 023020
[15] Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese)[张程宾, 许兆林, 陈永平2014物理学报63 214706]
[16] Zhang X Y, Zhu Y X, Granick S 2002 Science 295 663
[17] Sun T L, Lin F, Gao X F, Jiang L 2005 Acc. Chem. Res. 38 644
[18] Chen Q W, Meng L Y, Li Q K, Wang D, Guo W, Shuai Z G, Jiang L 2011 Small 7 2225
[19] Murad S, Puri I K 2012 J. Chem. Phys 137 081101
[20] Priezjev N V 2007 J. Chem. Phys. 127 144708
计量
- 文章访问数: 5617
- PDF下载量: 260
- 被引次数: 0