-
针对高超声速飞行器防热, 搭建了螺线管磁控热防护系统的物理模型. 采用低磁雷诺数磁流体数学模型, 分析了外加磁场强度及磁场形态对磁控热防护效果的影响. 对比了三种磁场类型(磁偶极子、螺线管、均布磁场)下磁控热防护效果的差异, 分析了螺线管几何参数对磁控热防护效果的影响. 研究表明, 磁场降低表面热流作用存在饱和现象; 三种磁场形态的磁控热防护能力从小到大依次为磁偶极子、螺线管、均布磁场; 相同驻点磁感应强度条件下, 增大螺线管半径有利于提高磁控热防护效果, 缩短螺线管与驻点距离不利于驻点和肩部防热, 螺线管长度对磁控热防护效果影响相对较小.During hypersonic flight, the weakly-ionized plasma layer post shock can be utilized for flow control by externally applying a magnetic field. The Lorentz force, which is induced by the interaction between the ionized air and the magnetic field, decelerates the flow in the shock layer. Consequently, the thickness of the shock layer is increased and the convective heat flux can be mitigated. This so-called magnetohydrodynamic (MHD) heat shield system has been proved to be effective in heat flux mitigation by many researchers.Different from the dipole magnet conventionally used in previous researches on MHD heat shield, a normal columned solenoid-based MHD thermal protection system model is built in this paper. The present numerical analysis is mainly based on the low magneto-Reynolds MHD model, which neglects the induction magnetic field. Hall effect and the ion-slip effect are also neglected here because an insulating wall is assumed. With these hypothesis, a series of axisymmetric simulations on the flow field of Japanese Orbital Reentry Experimental Capsule (OREX) are performed to analyze the influence of different externally applied magnetic fields on the efficiency of MHD thermal protection. First, based on the dipole magnet field, the influence of magnetic induction density is analyzed. Second, differences between the efficiency of MHD thermal protection under three types of magnetic field, namely dipole magnet, solenoid magnet, and uniform magnet field are compared. Finally, the influence of the geometric parameters of solenoid magnet on the MHD thermal protection is analyzed. Results show that, saturation effect exists in the process of MHD heat flux mitigation and it confines the effectiveness of MHD heat shield system. Thermal protection capabilities under three types of magnetic field are ranked from weak to strong as dipole magnet, solenoid magnet, and uniform magnet field. Under the same magnetic induction intensity at the stagnation point, first, the increase of solenoid radius improves its effectiveness in MHD thermal protection; second, the influence of solenoid length on the efficiency of MHD thermal protection is weak, indicating that the solenoid length can be optimized with the remaining two factors, namely the exciting current density and the total weight of solenoid magnet. Finally, the closer distance between the solenoid and stagnation point has negative influence on MHD thermal protection for the stagnation and the shoulder area of the reentry capsule.
-
Keywords:
- MHD flow control /
- hypersonic vehicle /
- thermal protection /
- solenoid magnet
[1] Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401
[2] Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 201310112295.7 [2015-04-15] (in Chinese) [刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利. ZL 201310112295.7]
[3] Peng W G, He Y R, Wang X Z, Zhu J Q, Han J C 2015 Chin. J. Aeronaut 28 121
[4] Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 物理学报 63 044701]
[5] Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese) [赵光银, 李应红, 梁华, 化为卓, 韩孟虎 2015 物理学报 64 015101]
[6] Bisek N J 2010 Ph. D. Dissertation (Michigan: University of Michigan)
[7] Yu H Y 2014 Acta Phys. Sin. 63 047502 (in Chinese) [于红云 2014 物理学报 63 047502]
[8] Zhang S H, Zhao H, Du A M, Cao X 2013 Sci. China: Tech. Sci. 43 1242 (in Chinese) [张绍华, 赵华, 杜爱民, 曹馨 2013 中国科学:技术科学 43 1242]
[9] Swati M, Iswar C M, Tasawar H 2014 Chin. Phys. B 23 104701
[10] Bityurin V A, Bocharov A N 2011 AIAA 2011-3463
[11] Bityurin V A, Bocharov A N 2014 AIAA 2014-1033
[12] Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927
[13] Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007 J. Spacecraft Rockets 44 625
[14] Yoshino T, Fujino T, Ishikawa M 2010 41 st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010.
[15] Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours France, September 24-28 2012, AIAA 2012-5804
[16] Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009 J. Spacecraft Rockets 46 274
[17] Lei Y Z 1991 Axisymmetric Coil Magnetic Field Computation (Beijing: China Measurement Publication) pp65-70 (in Chinese) [雷银照 1991. 轴对称线圈磁场计算(北京: 中国计量出版社) 第 65-70 页]
[18] L H Y, Lee C H 2010 Sci. China: Tech. Sci. 40 496 (in Chinese) [吕浩宇, 李椿萱 2010 中国科学: 技术科学 40 496]
[19] Raizer Y P 1991 Gas Discharge Physics (New York: Springer-Verlag)
[20] Miller C G 1984 NASA-TP-2334
期刊类型引用(15)
1. 罗仕超,柳军,胡守超,吴里银,常雨,孔小平,张宏安,吕明磊. 高超声速进气道自起动特性磁流体动力学控制机理. 中国科学:物理学 力学 天文学. 2024(03): 138-149 . 百度学术
2. 丁明松,刘庆宗,江涛,傅杨奥骁,李鹏,梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用. 物理学报. 2024(11): 220-233 . 百度学术
3. 罗仕超,胡守超,柳军,吴里银,孔小平,常雨,吕明磊. 再入飞行器热化学非平衡流场磁流体动力学控制机理. 中国科学:物理学 力学 天文学. 2024(07): 189-200 . 百度学术
4. 赵其进,毛保全,白向华,杨雨迎,陈春林. 横向磁场对绝缘/导电圆管中磁气体动力学流动和传热特性的影响. 物理学报. 2022(16): 274-287 . 百度学术
5. 罗仕超,吴里银,常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报. 2022(21): 260-269 . 百度学术
6. 丁明松,刘庆宗,江涛,董维中,高铁锁,傅杨奥骁. 磁控热防护系统在天地往返运载器上的应用仿真. 航空学报. 2021(07): 183-194 . 百度学术
7. 丁明松,刘庆宗,江涛,高铁锁,董维中,傅杨奥骁. 高温气体效应对高超声速磁流体控制的影响. 航空学报. 2020(02): 82-94 . 百度学术
8. 丁明松,江涛,刘庆宗,董维中,高铁锁,傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法. 物理学报. 2020(13): 218-230 . 百度学术
9. 杨志勇,许友安,蔡伟,邢俊晖,张志利. 磁光调制方位传递系统中螺线管近轴区磁场影响分析. 光学学报. 2019(07): 328-337 . 百度学术
10. 丁明松,江涛,董维中,高铁锁,刘庆宗,傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报. 2019(17): 182-194 . 百度学术
11. 丁明松,江涛,刘庆宗,董维中,高铁锁,傅杨奥骁. 电导率模拟对高超声速MHD控制影响. 航空学报. 2019(11): 60-72 . 百度学术
12. 李程,毛保全,白向华,李晓刚. 磁场方向对圆筒结构内高温导电气体流动与传热特性的影响研究. 兵工学报. 2018(05): 851-858 . 百度学术
13. 姚霄,刘伟强,谭建国. 高速飞行器磁控阻力特性. 物理学报. 2018(17): 187-196 . 百度学术
14. 李开,柳军,刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响. 物理学报. 2017(05): 186-196 . 百度学术
15. 李开,柳军,刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究. 物理学报. 2017(08): 208-217 . 百度学术
其他类型引用(5)
-
[1] Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401
[2] Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 201310112295.7 [2015-04-15] (in Chinese) [刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利. ZL 201310112295.7]
[3] Peng W G, He Y R, Wang X Z, Zhu J Q, Han J C 2015 Chin. J. Aeronaut 28 121
[4] Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 物理学报 63 044701]
[5] Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese) [赵光银, 李应红, 梁华, 化为卓, 韩孟虎 2015 物理学报 64 015101]
[6] Bisek N J 2010 Ph. D. Dissertation (Michigan: University of Michigan)
[7] Yu H Y 2014 Acta Phys. Sin. 63 047502 (in Chinese) [于红云 2014 物理学报 63 047502]
[8] Zhang S H, Zhao H, Du A M, Cao X 2013 Sci. China: Tech. Sci. 43 1242 (in Chinese) [张绍华, 赵华, 杜爱民, 曹馨 2013 中国科学:技术科学 43 1242]
[9] Swati M, Iswar C M, Tasawar H 2014 Chin. Phys. B 23 104701
[10] Bityurin V A, Bocharov A N 2011 AIAA 2011-3463
[11] Bityurin V A, Bocharov A N 2014 AIAA 2014-1033
[12] Bisek N J, Gosse R, Poggie J 2013 J. Spacecraft Rockets 50 927
[13] Fujino T, Matsumoto Y, Kasahara J, Ishikawa M 2007 J. Spacecraft Rockets 44 625
[14] Yoshino T, Fujino T, Ishikawa M 2010 41 st Plasmadynamics and Lasers Conference Chicago, Illinois, June 1-28, 2010.
[15] Cristofolini A, Borghi C A, Neretti G, Battista F, Schettino A, Trifoni E, Filippis F D, Passaro A, Baccarella D 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours France, September 24-28 2012, AIAA 2012-5804
[16] Gulhan A, Esser B, Koch U, Siebe F, Riehmer J, Giordano D 2009 J. Spacecraft Rockets 46 274
[17] Lei Y Z 1991 Axisymmetric Coil Magnetic Field Computation (Beijing: China Measurement Publication) pp65-70 (in Chinese) [雷银照 1991. 轴对称线圈磁场计算(北京: 中国计量出版社) 第 65-70 页]
[18] L H Y, Lee C H 2010 Sci. China: Tech. Sci. 40 496 (in Chinese) [吕浩宇, 李椿萱 2010 中国科学: 技术科学 40 496]
[19] Raizer Y P 1991 Gas Discharge Physics (New York: Springer-Verlag)
[20] Miller C G 1984 NASA-TP-2334
期刊类型引用(15)
1. 罗仕超,柳军,胡守超,吴里银,常雨,孔小平,张宏安,吕明磊. 高超声速进气道自起动特性磁流体动力学控制机理. 中国科学:物理学 力学 天文学. 2024(03): 138-149 . 百度学术
2. 丁明松,刘庆宗,江涛,傅杨奥骁,李鹏,梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用. 物理学报. 2024(11): 220-233 . 百度学术
3. 罗仕超,胡守超,柳军,吴里银,孔小平,常雨,吕明磊. 再入飞行器热化学非平衡流场磁流体动力学控制机理. 中国科学:物理学 力学 天文学. 2024(07): 189-200 . 百度学术
4. 赵其进,毛保全,白向华,杨雨迎,陈春林. 横向磁场对绝缘/导电圆管中磁气体动力学流动和传热特性的影响. 物理学报. 2022(16): 274-287 . 百度学术
5. 罗仕超,吴里银,常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报. 2022(21): 260-269 . 百度学术
6. 丁明松,刘庆宗,江涛,董维中,高铁锁,傅杨奥骁. 磁控热防护系统在天地往返运载器上的应用仿真. 航空学报. 2021(07): 183-194 . 百度学术
7. 丁明松,刘庆宗,江涛,高铁锁,董维中,傅杨奥骁. 高温气体效应对高超声速磁流体控制的影响. 航空学报. 2020(02): 82-94 . 百度学术
8. 丁明松,江涛,刘庆宗,董维中,高铁锁,傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法. 物理学报. 2020(13): 218-230 . 百度学术
9. 杨志勇,许友安,蔡伟,邢俊晖,张志利. 磁光调制方位传递系统中螺线管近轴区磁场影响分析. 光学学报. 2019(07): 328-337 . 百度学术
10. 丁明松,江涛,董维中,高铁锁,刘庆宗,傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报. 2019(17): 182-194 . 百度学术
11. 丁明松,江涛,刘庆宗,董维中,高铁锁,傅杨奥骁. 电导率模拟对高超声速MHD控制影响. 航空学报. 2019(11): 60-72 . 百度学术
12. 李程,毛保全,白向华,李晓刚. 磁场方向对圆筒结构内高温导电气体流动与传热特性的影响研究. 兵工学报. 2018(05): 851-858 . 百度学术
13. 姚霄,刘伟强,谭建国. 高速飞行器磁控阻力特性. 物理学报. 2018(17): 187-196 . 百度学术
14. 李开,柳军,刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响. 物理学报. 2017(05): 186-196 . 百度学术
15. 李开,柳军,刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究. 物理学报. 2017(08): 208-217 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 7460
- PDF下载量: 257
- 被引次数: 20