搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种多频局域共振型声子晶体板的低频带隙与减振特性

吴健 白晓春 肖勇 耿明昕 郁殿龙 温激鸿

引用本文:
Citation:

一种多频局域共振型声子晶体板的低频带隙与减振特性

吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿

Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate

Wu Jian, Bai Xiao-Chun, Xiao Yong, Geng Ming-Xin, Yu Dian-Long, Wen Ji-Hong
PDF
导出引用
  • 设计了一种多频局域共振型声子晶体板结构, 该结构由一薄板上附加周期性排列的多个双悬臂梁式子结构而构成. 由于多个双悬臂梁式子结构的低频振动与薄板振动的相互耦合作用, 这种局域共振型板结构可产生多个低频弯曲波带隙(禁带); 带隙频率范围内的板弯曲波会被禁止传播, 利用带隙可以实现对薄板的多个目标频率处低频减振. 本文针对这种局域共振型板结构进行了简化, 并基于平面波展开法建立了其弯曲波带隙计算理论模型; 基于该模型, 结合具体算例进行了带隙特性理论分析. 设计、制备了一种存在两个低频弯曲波带隙的局域共振型板结构样件, 通过激光扫描测振仪测试证实该结构存在两个低频带隙, 在带隙频率范围的板弯曲振动被显著衰减.
    A multi-frequency locally resonant (LR) phononic plate is proposed in this paper. The phononic plate consists of periodic arrays of multiple double-cantilevered thin beams attached to a thin homogeneous plate. This proposed phononic plate is simplified and modeled using a plane wave expansion method to enable the calculation of flexural wave band structures. The band gap behavior of the phononic plate is analyzed comprehensively. In addition, an experimental specimen is fabricated using a square aluminum plate with a thickness of 0.9 mm and an area of 840 mm840 mm, and attached to the specimens as periodic arrays of two types of double-cantilevered thin beams made of the same material as the host plate. And the specimen is measured by using a scanning laser Doppler vibrometer to verify the theoretical predictions of band gaps. Investigations of this paper yield the following findings and conclusions: (1) Due to the interaction of low-frequency vibrational modes of attached multiple double-cantilevered beams and flexural vibration of the host plate, the proposed multi-frequency LR phononic plate can exhibit multiple low-frequency flexural wave band gaps (stop bands). It is also found that the band gaps of a multi-frequency LR phononic plate, especially those appearing in a lower frequency range, are generally narrower than that of a single-frequency LR phononic plate with the same type of double-cantilevered beams. (2) The frequency location of band gaps moves to higher frequency range when the thickness of the double-cantilevered beams is increased, or when the length of the double-cantilevered beams is decreased. It is also shown that a very small variation of the thickness (e. g., 0.1 mm) may lead to significant changes of frequency position of the band gaps. (3) When the width of the double-cantilevered beams is enlarged or the number of the double-cantilevered beams is increased, the lower band gap edge will move to a lower frequency range, while the upper band gap edge will move to a higher frequency range. This implies that the bandwidth of the band gaps is broadened. However, at the same time, it is shown that the central frequencies of the band gaps remain almost unchanged. (4) Experimental measurements of the fabricated specimen evidence the existence of two low frequency band gaps, and confirm that the flexural plate vibrations are significantly reduced in the predicted band gaps.
      通信作者: 肖勇, xiaoy@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号: 51305448)、航空科学基金(批准号: 2015ZA88003)和国家电网公司科学技术项目(批准号: 5299001352UC)资助的课题.
      Corresponding author: Xiao Yong, xiaoy@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51305448), the Aeronautical Science Fund, Chinia (Grant No. 2015ZA88003), and the Science and Technology Project of State Grid Company of China (Grant No. 5299001352UC).
    [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [2]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734

    [3]

    Fang N, Xi D, Xu J, Ambati M, Strituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452

    [4]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beiging: National Defense Industry Press) pp196-291 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社) 第196-291页]

    [5]

    Wen J H, Wang G, Yu D L, Zhao H G, Liu Y Z, Wen X S 2008 Sci. China Series E: Technol. Sci. 51 85

    [6]

    Cheng C, Wu F G, Zhang X, Yao Y W 2014 Acta Phys. Sin. 63 024301 (in Chinese) [程聪, 吴福根, 张欣, 姚源卫 2014 物理学报 63 024301]

    [7]

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 154302 (in Chinese) [刘娇, 侯志林, 傅秀军 2015 物理学报 64 154302]

    [8]

    Zhang H, Wen J H, Chen S B, Wang G, Wen X S 2015 Chin. Phys. B 24 036201

    [9]

    Xiao Y, Wen J, Wen X 2012 Phys Lett A 376 1384

    [10]

    Xiao Y, Wen J, Yu D, Wen X 2013 J. Sound Vib. 332 867

    [11]

    Xiao Y, Wen J, Wang G, Wen X 2013 J. Vib. Acoust. 135 041006

    [12]

    Wang Y F, Wang Y S 2013 J. Sound Vib. 332 2019

    [13]

    Xiao Y, Wen J, Wen X 2012 New J. Phys. 14 033042

    [14]

    Zhang H, Wen J, Xiao Y, Wang G, Wen X 2015 J. Sound Vib. 343 104

    [15]

    Zhang H, Xiao Y, Wen J, Yu D, Wen X 2015 J. Phys. D: Appl. Phys. 48 435305

    [16]

    Zhang Y, Wen J, Xiao Y, Wen X, Wang J 2012 Phys Lett A 376 1489

    [17]

    Liu Z, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103

    [18]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602(R)

    [19]

    Yu D L, Liu Y Z, Qiu J, Zhao H G, Liu Z M 2005 Chin. Phys. Lett. 22 1958

    [20]

    Wu T T, Huang Z G, Tsai T C, Wu T C 2008 Appl. Phys. Lett. 93 111902

    [21]

    Pennec Y, Djafari-Rouhani B, Larabi H, Vasseur J O, Hladky-Hennion A C 2008 Phys. Rev. B 78 104105

    [22]

    Oudich M, Assouar M B, Hou Z 2010 Appl. Phys. Lett. 97 193503

    [23]

    Oudich M, Senesi M, Assouar M B, Ruzenne M, Sun J H, Vincent B, Hou Z, Wu T T 2011 Phys. Rev. B 84 165136

    [24]

    Xiao Y, Wen J, Wen X 2012 J. Sound Vib. 331 5408

    [25]

    Xiao Y, Wen J, Wen X 2012 J. Phys. D: Appl. Phys. 45 195401

    [26]

    Zhang S, Wu J H, Hu Z 2013 J. Appl. Phys. 113 163511

    [27]

    Wang Y F, Wang Y S 2013 J. Appl. Phys. 114 043509

    [28]

    Ma J, Hou Z, Assouar B M 2014 J. Appl. Phys. 115 093508

    [29]

    Xiao Y, Wen J, Huang L, Wen X 2014 J. Phys. D: Appl. Phys. 47 045307

    [30]

    Torrent D, Mayou D, Snchez-Dehesa J 2013 Phys. Rev. B 87 115143

  • [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [2]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734

    [3]

    Fang N, Xi D, Xu J, Ambati M, Strituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452

    [4]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beiging: National Defense Industry Press) pp196-291 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社) 第196-291页]

    [5]

    Wen J H, Wang G, Yu D L, Zhao H G, Liu Y Z, Wen X S 2008 Sci. China Series E: Technol. Sci. 51 85

    [6]

    Cheng C, Wu F G, Zhang X, Yao Y W 2014 Acta Phys. Sin. 63 024301 (in Chinese) [程聪, 吴福根, 张欣, 姚源卫 2014 物理学报 63 024301]

    [7]

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 154302 (in Chinese) [刘娇, 侯志林, 傅秀军 2015 物理学报 64 154302]

    [8]

    Zhang H, Wen J H, Chen S B, Wang G, Wen X S 2015 Chin. Phys. B 24 036201

    [9]

    Xiao Y, Wen J, Wen X 2012 Phys Lett A 376 1384

    [10]

    Xiao Y, Wen J, Yu D, Wen X 2013 J. Sound Vib. 332 867

    [11]

    Xiao Y, Wen J, Wang G, Wen X 2013 J. Vib. Acoust. 135 041006

    [12]

    Wang Y F, Wang Y S 2013 J. Sound Vib. 332 2019

    [13]

    Xiao Y, Wen J, Wen X 2012 New J. Phys. 14 033042

    [14]

    Zhang H, Wen J, Xiao Y, Wang G, Wen X 2015 J. Sound Vib. 343 104

    [15]

    Zhang H, Xiao Y, Wen J, Yu D, Wen X 2015 J. Phys. D: Appl. Phys. 48 435305

    [16]

    Zhang Y, Wen J, Xiao Y, Wen X, Wang J 2012 Phys Lett A 376 1489

    [17]

    Liu Z, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103

    [18]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602(R)

    [19]

    Yu D L, Liu Y Z, Qiu J, Zhao H G, Liu Z M 2005 Chin. Phys. Lett. 22 1958

    [20]

    Wu T T, Huang Z G, Tsai T C, Wu T C 2008 Appl. Phys. Lett. 93 111902

    [21]

    Pennec Y, Djafari-Rouhani B, Larabi H, Vasseur J O, Hladky-Hennion A C 2008 Phys. Rev. B 78 104105

    [22]

    Oudich M, Assouar M B, Hou Z 2010 Appl. Phys. Lett. 97 193503

    [23]

    Oudich M, Senesi M, Assouar M B, Ruzenne M, Sun J H, Vincent B, Hou Z, Wu T T 2011 Phys. Rev. B 84 165136

    [24]

    Xiao Y, Wen J, Wen X 2012 J. Sound Vib. 331 5408

    [25]

    Xiao Y, Wen J, Wen X 2012 J. Phys. D: Appl. Phys. 45 195401

    [26]

    Zhang S, Wu J H, Hu Z 2013 J. Appl. Phys. 113 163511

    [27]

    Wang Y F, Wang Y S 2013 J. Appl. Phys. 114 043509

    [28]

    Ma J, Hou Z, Assouar B M 2014 J. Appl. Phys. 115 093508

    [29]

    Xiao Y, Wen J, Huang L, Wen X 2014 J. Phys. D: Appl. Phys. 47 045307

    [30]

    Torrent D, Mayou D, Snchez-Dehesa J 2013 Phys. Rev. B 87 115143

  • [1] 王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣. 基于二维声子晶体板共振声场的微粒操控. 物理学报, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [2] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [3] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [4] 郭志巍, 郭寒贝, 王婷. 侧向局域共振超构板声振特性. 物理学报, 2021, 70(21): 214301. doi: 10.7498/aps.70.20210595
    [5] 骆全斌, 黄学勤, 邓伟胤, 吴迎, 陆久阳, 刘正猷. 声子晶体板中的第二类狄拉克点和边缘传输. 物理学报, 2021, 70(18): 184302. doi: 10.7498/aps.70.20210712
    [6] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [7] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [8] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [9] 姜久龙, 姚宏, 杜军, 赵静波, 邓涛. 双开口Helmholtz局域共振周期结构低频带隙特性研究. 物理学报, 2017, 66(6): 064301. doi: 10.7498/aps.66.064301
    [10] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [11] 朱席席, 肖勇, 温激鸿, 郁殿龙. 局域共振型加筋板的弯曲波带隙与减振特性. 物理学报, 2016, 65(17): 176202. doi: 10.7498/aps.65.176202
    [12] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [13] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波. 物理学报, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [14] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [15] 刘敏, 侯志林, 傅秀军. 二维正方排列圆柱状亥姆赫兹共振腔阵列局域共振声带隙的研究. 物理学报, 2012, 61(10): 104302. doi: 10.7498/aps.61.104302
    [16] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [17] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [18] 李晓春, 梁宏宇, 易秀英, 肖清武, 赵保星. 二维组合宽带隙材料的研究. 物理学报, 2007, 56(5): 2784-2789. doi: 10.7498/aps.56.2784
    [19] 华 佳, 张 舒, 程建春. 三元周期结构声禁带形成机理. 物理学报, 2005, 54(3): 1261-1266. doi: 10.7498/aps.54.1261
    [20] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
计量
  • 文章访问数:  6829
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-07
  • 修回日期:  2015-11-12
  • 刊出日期:  2016-03-05

/

返回文章
返回