搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光在空气中成丝诱导氮荧光发射的空间分布

张云 林爽 张云峰 张鹤 常明莹 于淼 王雅秋 蔡晓明 姜远飞 陈安民 李苏宇 金明星

引用本文:
Citation:

飞秒激光在空气中成丝诱导氮荧光发射的空间分布

张云, 林爽, 张云峰, 张鹤, 常明莹, 于淼, 王雅秋, 蔡晓明, 姜远飞, 陈安民, 李苏宇, 金明星

Spatial distribution of nitrogen fluorescence emission induced by femtosecond laser filamentation in air

Zhang Yun, Lin Shuang, Zhang Yun-Feng, Zhang He, Chang Ming-Ying, Yu Miao, Wang Ya-Qiu, Cai Xiao-Ming, Jiang Yuan-Fei, Chen An-Min, Li Su-Yu, Jin Ming-Xing
PDF
HTML
导出引用
  • 测量了线偏振飞秒激光脉冲在空气中成丝产生的氮荧光发射的空间分布. 通过改变激光的偏振方向研究成丝过程中氮荧光发射的径向角分布, 发现${\rm{N}}_{{2}}^{{ + }}$荧光发射在垂直于激光偏振方向上更强, 而在平行于激光偏振方向上较弱; ${{\rm{N}}_{{2}}}$荧光发射在所有方向上具有近乎相同的强度. 原子和分子的激发、电离等动力学过程受激光强度的影响. 在飞秒激光成丝过程中沿着激光传播方向, 强度呈现先增强后减弱的分布, 从而影响这些过程的产物的空间分布及其荧光发射的空间分布. 沿着激光传播方向, 发现${{\rm{N}}_{{2}}}$荧光先于${\rm{N}}_{{2}}^{{ + }}$荧光出现且在${\rm{N}}_{{2}}^{{ + }}$荧光消失之后消失. 激光强度分布和激光偏振方向均会影响氮荧光的空间分布. 基于实验分析, 在短焦距情况下, 系间窜越过程能很好的解释${{\rm{N}}_{{2}}}{{(}}{{\rm{C}}^{{3}}}\Pi _{\rm{u}}^{{ + }})$的形成, 这项研究有助于理解飞秒激光成丝过程中氮荧光发射的产生机制.
    As a major component in the air, nitrogen emits fluorescence when it interacts with intensive laser field. The fluorescence comes from the first negative band system (${{\rm{B}}^{{2}}}\Sigma _{\rm{u}}^{{ + }} \to {{\rm{X}}^{{2}}}\Sigma _{\rm{g}}^{{ + }}$ transition) of ${\rm{N}}_{{2}}^{{ + }}$ and the second positive band system (${{\rm{C}}^{{3}}}\Pi _{\rm{u}}^{{ + }} \to {{\rm{B}}^{{3}}}\Pi _{\rm{g}}^{{ + }}$ transition) of ${{\rm{N}}_{{2}}}$. Under the action of high-intensity femtosecond laser, ${{\rm{N}}_{{2}}}$ can be directly photo-ionized into ${\rm{N}}_{{2}}^{{ + }}{{(}}{{\rm{B}}^{{2}}}\Sigma _{\rm{u}}^{{ + }})$, which results in fluorescence emission of ${\rm{N}}_{{2}}^{{ + }}$. In the process of femtosecond laser filament formation, the dynamic processes such as ionization and excitation of nitrogen molecules are affected by the laser intensity distribution and laser polarization direction. The products show different distributions in the propagation direction and radial space, which, in turn, affects its light emission. Therefore, it is necessary to further ascertain its generation mechanism through the spatial distribution of nitrogen fluorescence. In this experiment, the spatial distribution of the nitrogen fluorescence emission generated by linearly polarized femtosecond laser pulse filaments in air is measured. By changing the polarization direction of the laser to study the distribution of nitrogen fluorescence in the radial plane, it is found that the fluorescence emission of ${\rm{N}}_2^ + $ is more intense in the direction perpendicular to the laser polarization, while it is weaker in the direction parallel to the laser polarization. The nitrogen fluorescence emission has the same intensity in all directions. The ionization probability of a linear molecule depends on the angle between the laser polarization direction and the molecular axis, which is maximum (minimum) when the angle is ${{{0}}^{\rm{o}}}$(${{9}}{{{0}}^{\rm{o}}}$). The ${{\rm{N}}_{{2}}}$ gas is more likely to be ionized in the laser polarization direction, the nitrogen molecular ions ${\rm{N}}_{{2}}^{{ + }}$ and electrons are separated in the direction parallel to the laser polarization. Therefore, more ions (${\rm{N}}_{{2}}^{{ + }}$) are generated in the direction parallel to the laser polarization, and the fluorescence emission of ${\rm{N}}_{{2}}^{{ + }}$ is more intense. Along the propagation direction of the laser, it is found that the fluorescence of ${{\rm{N}}_{{2}}}$ appears before the fluorescence of ${\rm{N}}_2^ + $ and disappears after the fluorescence of ${\rm{N}}_{{2}}^{{ + }}$ has vanished. This is due to the fact that ${{\rm{N}}_{{2}}}$ can be ionized into ${\rm{N}}_{{2}}^{{ + }}{{(}}{{\rm{B}}^{{2}}}\Sigma_{\rm{u}}^{{ + }})$ at the position of high enough laser intensity, thus emitting fluorescence of ${\rm{N}}_2^ + $. However, the laser energy is not enough to ionize nitrogen at the beginning and end of laser transmission, but it can generate ${\rm{N}}_2^ * $, which emits nitrogen fluorescence through the process of intersystem crossing ${\rm{N}}_2^*\xrightarrow{{{\rm{ISC}}}}{{\rm{N}}_2}({{\rm{C}}^3}\Pi _{\rm{u}}^ + )$. The spatial distribution of nitrogen fluorescence emission during femtosecond laser filament formation shows that in the case of short focal length, the intersystem crossing scheme can explain the formation of ${{\rm{N}}_{{2}}}{{(}}{{\rm{C}}^{{3}}}\Pi _{\rm{u}}^{{ + }})$. This research is helpful in understanding the mechanism of nitrogen fluorescence emission.
      通信作者: 李苏宇, sylee@jlu.edu.cn ; 金明星, mxjin@jlu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2019YFA0307701)、国家自然科学基金(批准号: 11704145, 11974138, 11674128, 11504129, 11674124)和吉林省教育厅“十三五”科学研究规划项目(批准号: JJKH20190181KJ)资助的课题
      Corresponding author: Li Su-Yu, sylee@jlu.edu.cn ; Jin Ming-Xing, mxjin@jlu.edu.cn
    • Funds: Project supported by the National Basic Research Program (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant Nos. 11704145, 11974138, 11674128, 11504129, 11674124), and the Scientific Research Project of 13th Five-year Plan of the Education Department of Jilin Province, China (Grant No. JJKH20190181KJ)
    [1]

    Xu H, Cheng Y, Chin S L, Sun H B 2015 Laser Photonics Rev. 9 275Google Scholar

    [2]

    Dicaire I, Jukna V, Praz C, Milián C, Summerer L, Couairon A 2016 Laser Photonics Rev. 10 481Google Scholar

    [3]

    Lange H R, Chiron A, Ripoche J F, Mysyrowicz A, Breger P, Agostini P 1998 Phys. Rev. Lett. 81 1611Google Scholar

    [4]

    Kasparian J, Sauerbrey R, Chin S L 2000 Appl. Phys. B 71 877Google Scholar

    [5]

    Li S, Chen A, Jiang Y, Jin M 2018 Opt. Commun. 426 105Google Scholar

    [6]

    Chin S L, Xu H L, Luo Q, Théberge F, Liu W, Daigle J F, Kamali Y, Simard P T, Bernhardt J, Hosseini S A, Sharifi M, Méjean G, Azarm A, Marceau C, Kosareva O, Kandidov V P, Aközbek N, Becker A, Roy G, Mathieu P, Simard J R, Châteauneuf M, Dubois J 2009 Appl. Phys. B 95 1Google Scholar

    [7]

    Xu S, Sun X, Zeng B, Chu W, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L 2012 Opt. Express 20 299Google Scholar

    [8]

    Sun X, Xu S, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L, Mu G 2012 Opt. Express 20 4790Google Scholar

    [9]

    Hosseini S A, Luo Q, Ferland B, Liu W, Aközbek N, Roy G, Chin S L 2003 Appl. Phys. B 77 697Google Scholar

    [10]

    Daigle J F, Jaroń-Becker A, Hosseini S, Wang T J, Kamali Y, Roy G, Becker A, Chin S L 2010 Phys. Rev. A 82 023405Google Scholar

    [11]

    Lei M, Wu C, Liang Q, Zhang A, Li Y, Cheng Q, Wang S, Yang H, Gong Q, Jiang H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 145101Google Scholar

    [12]

    Ran P, Li G, Liu T, Hou H, Luo S 2019 Opt. Express 27 19177Google Scholar

    [13]

    Wang P, Xu S, Li D, Yang H, Jiang H, Gong Q, Wu C 2014 Phys. Rev. A 90 033407Google Scholar

    [14]

    朱竹青, 王晓雷 2011 物理学报 60 085205Google Scholar

    Zhu Z Q, Wang X L 2011 Acta Phys. Sin. 60 085205Google Scholar

    [15]

    Wu J, Wu Z, Chen T, Zhang H, Zhang Y, Zhang Y, Lin S, Cai X, Chen A, Jiang Y, Li S, Jin M 2020 Opt. Laser Technol. 131 106417Google Scholar

    [16]

    Mitryukovskiy S, Liu Y, Ding P, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [17]

    Xu H L, Azarm A, Bernhardt J, Kamali Y, Chin S L 2009 Chem. Phys. 360 171Google Scholar

    [18]

    Arnold B R, Roberson S D, Pellegrino P M 2012 Chem. Phys. 405 9Google Scholar

    [19]

    Li S, Jiang Y, Chen A, He L, Liu D, Jin M 2017 Phys. Plasmas 24 033111Google Scholar

    [20]

    Becker A, Bandrauk A D, Chin S L 2001 Chem. Phys. Lett. 343 345Google Scholar

    [21]

    Li S, Sui L, Chen A, Jiang Y, Liu D, Shi Z, Jin M 2016 Phys. Plasmas 23 023102Google Scholar

    [22]

    Su Q, Sun L, Chu C, Zhang Z, Zhang N, Lin L, Zeng Z, Kosareva O, Liu W, Chin S L 2020 J. Phys. Chem. Lett. 11 730Google Scholar

    [23]

    Pavičić D, Lee K F, Rayner D M, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 243001Google Scholar

    [24]

    姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 物理学报 63 184201Google Scholar

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201Google Scholar

    [25]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31Google Scholar

    [26]

    Liu Y, Ding P, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Chin S L, Xu H L, Cheng Y, Xu Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [28]

    Zhang Y, Lötstedt E, Yamanouchi K 2017 J. Phys. B: At. Mol. Opt. Phys. 50 185603Google Scholar

    [29]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [30]

    Ando T, Lötstedt E, Iwasaki A, Li H, Fu Y, Wang S, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [31]

    Yao J, Jiang S, Chu W, Zeng B, Wu C, Lu R, Li Z, Xie H, Li G, Yu C, Wang Z H, Jiang H, Gong Q, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [32]

    Bernhardt J, Liu W, Théberge F, Xu H L, Daigle J F, Châteauneuf M, Dubois J, Chin S L 2008 Opt. Commun. 281 1268Google Scholar

    [33]

    Plenge J, Wirsing A, Raschpichler C, Meyer M, Rühl E 2009 J. Chem. Phys. 130 244313Google Scholar

  • 图 1  测定飞秒激光成丝过程中氮荧光空间分布的实验装置示意图. A: 光阑; H: 半波片; L: 聚焦透镜; F: 光纤

    Fig. 1.  Schematic diagram of experimental setup for measuring the spatial distribution of nitrogen fluorescence during femtosecond laser filament formation. A: Aperture. H: half-wave plate. L: focusing lens. F: optical fiber.

    图 2  当脉冲能量为 (a) 2.00, (b) 2.63和(c) 3.00 mJ时氮荧光的径向角分布

    Fig. 2.  Radial angular distribution of nitrogen fluorescence when pulse energy is (a) 2.00, (b) 2.63 and (c) 3.00 mJ.

    图 3  (a)激光偏振方向平行(黑色实线)和垂直(红色虚线)于z轴时的氮荧光光谱; 激光偏振方向平行和垂直于z轴时(b) 337, (c) 357, (d) 391和(e) 428 nm荧光信号随传播距离的变化

    Fig. 3.  (a) Nitrogen fluorescence spectrum when the laser polarization direction is parallel (solid black line) and perpendicular (dashed red line) to the z-axis. Variations of the (b) 337, (c) 357, (d) 391 and (e) 428 nm fluorescence signals with the propagation distance when the laser polarization direction is parallel and perpendicular to z-axis.

    图 4  当脉冲能量为2.00, 2.63和3.00 mJ时, 激光偏振方向平行 (a), (b), (c)和垂直(a'), (b'), (c')于z轴时${{\rm{N}}_{\rm{2}}}$${\rm{N}}_{\rm{2}}^{{ + }}$荧光信号随传播距离的变化

    Fig. 4.  Variations of the ${{\rm{N}}_{\rm{2}}}$ and ${\rm{N}}_{\rm{2}}^{{ + }}$ fluorescence signal with the propagation distance when the laser polarization direction is parallel (a), (b), (c) and perpendicular (a'), (b'), (c') to the z-axis and the pulse energy is 2.00, 2.63 and 3.00 mJ.

  • [1]

    Xu H, Cheng Y, Chin S L, Sun H B 2015 Laser Photonics Rev. 9 275Google Scholar

    [2]

    Dicaire I, Jukna V, Praz C, Milián C, Summerer L, Couairon A 2016 Laser Photonics Rev. 10 481Google Scholar

    [3]

    Lange H R, Chiron A, Ripoche J F, Mysyrowicz A, Breger P, Agostini P 1998 Phys. Rev. Lett. 81 1611Google Scholar

    [4]

    Kasparian J, Sauerbrey R, Chin S L 2000 Appl. Phys. B 71 877Google Scholar

    [5]

    Li S, Chen A, Jiang Y, Jin M 2018 Opt. Commun. 426 105Google Scholar

    [6]

    Chin S L, Xu H L, Luo Q, Théberge F, Liu W, Daigle J F, Kamali Y, Simard P T, Bernhardt J, Hosseini S A, Sharifi M, Méjean G, Azarm A, Marceau C, Kosareva O, Kandidov V P, Aközbek N, Becker A, Roy G, Mathieu P, Simard J R, Châteauneuf M, Dubois J 2009 Appl. Phys. B 95 1Google Scholar

    [7]

    Xu S, Sun X, Zeng B, Chu W, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L 2012 Opt. Express 20 299Google Scholar

    [8]

    Sun X, Xu S, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L, Mu G 2012 Opt. Express 20 4790Google Scholar

    [9]

    Hosseini S A, Luo Q, Ferland B, Liu W, Aközbek N, Roy G, Chin S L 2003 Appl. Phys. B 77 697Google Scholar

    [10]

    Daigle J F, Jaroń-Becker A, Hosseini S, Wang T J, Kamali Y, Roy G, Becker A, Chin S L 2010 Phys. Rev. A 82 023405Google Scholar

    [11]

    Lei M, Wu C, Liang Q, Zhang A, Li Y, Cheng Q, Wang S, Yang H, Gong Q, Jiang H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 145101Google Scholar

    [12]

    Ran P, Li G, Liu T, Hou H, Luo S 2019 Opt. Express 27 19177Google Scholar

    [13]

    Wang P, Xu S, Li D, Yang H, Jiang H, Gong Q, Wu C 2014 Phys. Rev. A 90 033407Google Scholar

    [14]

    朱竹青, 王晓雷 2011 物理学报 60 085205Google Scholar

    Zhu Z Q, Wang X L 2011 Acta Phys. Sin. 60 085205Google Scholar

    [15]

    Wu J, Wu Z, Chen T, Zhang H, Zhang Y, Zhang Y, Lin S, Cai X, Chen A, Jiang Y, Li S, Jin M 2020 Opt. Laser Technol. 131 106417Google Scholar

    [16]

    Mitryukovskiy S, Liu Y, Ding P, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [17]

    Xu H L, Azarm A, Bernhardt J, Kamali Y, Chin S L 2009 Chem. Phys. 360 171Google Scholar

    [18]

    Arnold B R, Roberson S D, Pellegrino P M 2012 Chem. Phys. 405 9Google Scholar

    [19]

    Li S, Jiang Y, Chen A, He L, Liu D, Jin M 2017 Phys. Plasmas 24 033111Google Scholar

    [20]

    Becker A, Bandrauk A D, Chin S L 2001 Chem. Phys. Lett. 343 345Google Scholar

    [21]

    Li S, Sui L, Chen A, Jiang Y, Liu D, Shi Z, Jin M 2016 Phys. Plasmas 23 023102Google Scholar

    [22]

    Su Q, Sun L, Chu C, Zhang Z, Zhang N, Lin L, Zeng Z, Kosareva O, Liu W, Chin S L 2020 J. Phys. Chem. Lett. 11 730Google Scholar

    [23]

    Pavičić D, Lee K F, Rayner D M, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 243001Google Scholar

    [24]

    姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 物理学报 63 184201Google Scholar

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201Google Scholar

    [25]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31Google Scholar

    [26]

    Liu Y, Ding P, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Chin S L, Xu H L, Cheng Y, Xu Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [28]

    Zhang Y, Lötstedt E, Yamanouchi K 2017 J. Phys. B: At. Mol. Opt. Phys. 50 185603Google Scholar

    [29]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [30]

    Ando T, Lötstedt E, Iwasaki A, Li H, Fu Y, Wang S, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [31]

    Yao J, Jiang S, Chu W, Zeng B, Wu C, Lu R, Li Z, Xie H, Li G, Yu C, Wang Z H, Jiang H, Gong Q, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [32]

    Bernhardt J, Liu W, Théberge F, Xu H L, Daigle J F, Châteauneuf M, Dubois J, Chin S L 2008 Opt. Commun. 281 1268Google Scholar

    [33]

    Plenge J, Wirsing A, Raschpichler C, Meyer M, Rühl E 2009 J. Chem. Phys. 130 244313Google Scholar

  • [1] 宋寒冰, 郎鹏, 季博宇, 徐洋, 宋晓伟, 林景全. 利用啁啾飞秒激光脉冲调控金薄膜中传输表面等离激元的群延迟色散. 物理学报, 2024, 73(17): 177102. doi: 10.7498/aps.73.20240973
    [2] 时凯居, 李睿, 李长富, 王成新, 徐现刚, 冀子武. 荧光法测定半导体禁带宽度. 物理学报, 2022, 71(6): 067803. doi: 10.7498/aps.71.20211894
    [3] 付丽丽, 常峻巍, 陈佳琪, 张兰芝, 郝作强. 平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射. 物理学报, 2020, 69(4): 044202. doi: 10.7498/aps.69.20191350
    [4] 常峻巍, 朱瑞晗, 张兰芝, 奚婷婷, 郝作强. 整形飞秒激光脉冲的成丝超连续辐射控制. 物理学报, 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [5] 李贺, 陈安民, 于丹, 李苏宇, 金明星. 温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响. 物理学报, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [6] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [7] 张伟, 滕浩, 沈忠伟, 何鹏, 王兆华, 魏志义. 18 mJ,100 Hz飞秒钛宝石激光放大器. 物理学报, 2016, 65(22): 224204. doi: 10.7498/aps.65.224204
    [8] 刘桂媛, 宋洪胜, 张宁玉, 程传福. 飞秒激光在锥形镀膜探针传输中相位奇异的研究. 物理学报, 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [9] 赵冠凯, 刘军, 李儒新. 基于多光子脉冲内干涉相位扫描法对飞秒激光脉冲进行相位测量和补偿的研究. 物理学报, 2014, 63(16): 164207. doi: 10.7498/aps.63.164207
    [10] 高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全. 基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量. 物理学报, 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [11] 郭德成, 蒋晓东, 黄进, 向霞, 王凤蕊, 刘红婕, 周信达, 祖小涛. 紫外脉冲激光退火发次对KDP晶体抗损伤性能的影响. 物理学报, 2013, 62(14): 147803. doi: 10.7498/aps.62.147803
    [12] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [13] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [14] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [15] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 近相对论强度激光与薄膜靶相互作用中靶厚度对超热电子发射方向的影响. 物理学报, 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [16] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [17] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速. 物理学报, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [18] 邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展. 飞秒激光烧蚀石英玻璃的实验与理论研究. 物理学报, 2004, 53(7): 2216-2220. doi: 10.7498/aps.53.2216
    [19] 段作梁, 陈建平, 方宗豹, 王兴涛, 李儒新, 林礼煌, 徐至展. 1kHz飞秒激光脉冲在空气中传输成丝的演化过程. 物理学报, 2004, 53(2): 473-477. doi: 10.7498/aps.53.473
    [20] 王淮生, 孙大睿, 张志刚, 柴 路, 王清月. 啁啾飞秒激光脉冲形成的光纤光栅的Bragg反射特性. 物理学报, 2003, 52(9): 2185-2189. doi: 10.7498/aps.52.2185
计量
  • 文章访问数:  4842
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2021-02-02
  • 上网日期:  2021-06-22
  • 刊出日期:  2021-07-05

/

返回文章
返回