搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

18 mJ,100 Hz飞秒钛宝石激光放大器

张伟 滕浩 沈忠伟 何鹏 王兆华 魏志义

引用本文:
Citation:

18 mJ,100 Hz飞秒钛宝石激光放大器

张伟, 滕浩, 沈忠伟, 何鹏, 王兆华, 魏志义

A 18 mJ femtosecond Ti: sapphire amplifier at 100 Hz repetition rate

Zhang Wei, Teng Hao, Shen Zhong-Wei, He Peng, Wang Zhao-Hua, Wei Zhi-Yi
PDF
导出引用
  • 采用环形腔再生放大及四通放大的两级放大方案,在重复频率100 Hz、单脉冲能量75.1 mJ的倍频Nd:YAG激光抽运下,通过啁啾脉冲放大飞秒钛宝石激光,获得了单脉冲能量25.4 mJ的放大输出,对应能量转换效率33.8%.经光栅压缩器补偿色散后的单脉冲能量为18.3 mJ,脉冲宽度为37.8 fs,对应峰值功率0.48 TW.测量其脉冲能量稳定性为3.6%,光束质量M2因子在X和Y方向上分别为1.8,1.6.
    High energy and high repetition rate femtosecond Ti:sapphire lasers are widely used in isolated attosecond pulses and high-order harmonic generation. Enhancing the driving laser energy is a convenient and effective way to improve attosecond pulse energy. A 1 kHz or higher repetition rate millijoule level femtosecond Ti:sapphire amplifier is generally used to generate isolated attosecond. However, due to the limitation of its green pump laser energy, the energy of femtosecond Ti:sapphire laser is limited to several millijoules. Appropriately reducing the requirements for repetition rate, realizing high energy driving laser will significantly improve attosecond pulse energy and extend its application scope. Meanwhile, a 532 nm pump laser from frequency doubled 1064 nm Nd:YAG flash lamp pumped laser at 100 Hz repetition rate can achieve high pump energy with lower cost. Accordingly, we develope a 100 Hz repetition rate high energy amplifier based on Ti:sapphire crystal. The femtosecond amplifier system consists of oscillator, stretcher, ring cavity regenerative amplifier, four-pass amplifier and grating compressor. The ring cavity regenerative amplifier is the first amplifier as pre-amplifier, and the four-pass amplifier is the booster amplified-stage. 80 MHz seed pulse from the oscillator has a full width at half maximum bandwidth of 61 nm with a 20 fs duration. Then the seed pulses are stretched to 200 ps with a Martinez grating stretcher, rotated to vertical polarization and injected into the regenerative amplifier. The amplified uncompressed 1 kHz repetition rate laser pulses with 3 mJ pulse energy are selected to be 100 Hz and input into the four-pass amplifier. With a pulse energy of 75.1 mJ, wavelength at 532 nm flash lamp pumped pump laser at 100 Hz repetition rate, single pulse energy up to 25.4 mJ is obtained from a Ti:sapphire crystal, corresponding to a high energy conversion efficiency of 33.8%. We believe that higher energy should be possible if the pump energy can be further increased. After expanding the beam to 10 mm in diameter, the amplified chirped pulse is compressed using a four-pass, single grating compressor, with an overall efficiency of 72%. The highest pulse energy after compression is 18.3 mJ. For a fluctuation of the 100 Hz pump laser is as high as 3.4% for over 10000 shots, the 3.6% energy stability of the amplifier has a room to be improved. The typical spectrum bandwidth after the compressor is 39 nm, which can support transform-limited pulse duration of 32.8 fs. After fine dispersion compensation by the compressor, A pulse duration of 37.8 fs is measured using a single shot autocorrelator (Minioptic Technology, Inc). In addition, the spatial profile of the output beam from the compressor is measured using a commercial laser beam analyzer (Spiricon, Inc). The beam quality M2 factor are 1.8 and 1.6 in X and Y directions, respectively. In summary, a peak power of 0.48 TW compact 100 Hz femtosecond laser with pulse duration of 37.8 fs, pulse energy of 18.3 mJ is achieved from a two-stage amplifier system based on Ti:sapphire crystal. We believe that with a more stable and better spatial profile pump source, even better performance can be obtained by this scheme. Nevertheless, the current results show that this system should be favorable for high energy attosecond pulse generation and further amplification such as Terawatt system.
      通信作者: 张伟, zhangwei0724@163.com;zywei@iphy.ac.cn ; 魏志义, zhangwei0724@163.com;zywei@iphy.ac.cn
    • 基金项目: 国家重大科学仪器设备开发专项基金(批准号:2012YQ120047)和国家自然科学基金(批准号:11434016)资助的课题.
      Corresponding author: Zhang Wei, zhangwei0724@163.com;zywei@iphy.ac.cn ; Wei Zhi-Yi, zhangwei0724@163.com;zywei@iphy.ac.cn
    • Funds: Project supported by the Special Foundation of State Major Scientific Instrument and Equipment Development of China (Grant No. 2012YQ120047) and National Natural Science Foundation of China (Grants No. 11434016).
    [1]

    Strickland D, Mourou G 1985Opt. Commun. 55 447

    [2]

    Lu X, Chen S Y, Ma J L, Hou L, Liao G Q, Wang J G, Han Y J, Liu X L, Teng H, Han H N 2015Sci. Rep. 5 15515

    [3]

    Horio T, Suzuki Y, Suzuki T 2016J. Chem. Phys. 145 044307

    [4]

    Zhang J Y, Wang R, Chen B, Ye P, Zhang W, Zhao H Y, Zhen J, Huang Y F, Wei Z Y, Gu Y 2013Laser. Surg. Med. 45 450

    [5]

    Ito S, Ishikawa H, Miura T, Takasago K, Endo A, Torizuka K 2003Appl. Phys. B:Lasers Opt. 76 497

    [6]

    Wang Z H, Liu C, Shen Z W, Zhang Q, Teng H, Wei Z Y 2011Opt. Lett. 36 3194

    [7]

    Dalui M, Wang W M, Trivikram T M, Sarkar S, Tata S, Jha J, Ayyub P, Sheng Z M, Krishnamurthy M 2015Sci. Rep. 5 11930

    [8]

    Remington B A, Takabe H 1999Science 284 1488

    [9]

    Gilbertson S 2010Phys. Rev. A 81 043810

    [10]

    Schmidt B E, Shiner A D, Lassonde P, Kieffer J C, Corkum P B, Villeneuve D M, Legare F 2011Opt. Express 19 6858

    [11]

    Tian Y C, Tian H, Wu Y L, Zhu L L, Tao L Q, Zhang W, Shu Y, Xie D, Yang Y, Wei Z Y, Lu X H, Shih C K, Zhao J M 2015Sci. Rep. 5 10582

    [12]

    Liu J, Li X F, Chen X W, Jiang Y L, Li R X 2007Acta Phys. Sin. 56 1375(in Chinese)[刘军, 李小芳, 陈晓伟, 姜永亮, 李儒新, 徐至展2007物理学报56 1375]

    [13]

    Ye P, He X K, Teng H, Zhan M J, Zhong S Y, Zhang W, Wang L F, Wei Z Y 2014Phys. Rev. Lett. 113 073601

    [14]

    Wang L F, He X K, Teng H, Yun C X, Zhang W, Wei Z Y 2015Appl. Phys. B:Lasers Opt. 121 81

    [15]

    Goulielmakis E 2008Science 320 1614

    [16]

    Wu Y, Cunningham E, Zang H, Li J, Chini M, Wang X, Wang Y, Zhao K, Chang Z 2013Appl. Phys. Lett. 102 201104

    [17]

    Zhang W, Teng H, Wang Z H, Shen Z W, Wei Z Y 2013Appl. Opt. 52 1517

  • [1]

    Strickland D, Mourou G 1985Opt. Commun. 55 447

    [2]

    Lu X, Chen S Y, Ma J L, Hou L, Liao G Q, Wang J G, Han Y J, Liu X L, Teng H, Han H N 2015Sci. Rep. 5 15515

    [3]

    Horio T, Suzuki Y, Suzuki T 2016J. Chem. Phys. 145 044307

    [4]

    Zhang J Y, Wang R, Chen B, Ye P, Zhang W, Zhao H Y, Zhen J, Huang Y F, Wei Z Y, Gu Y 2013Laser. Surg. Med. 45 450

    [5]

    Ito S, Ishikawa H, Miura T, Takasago K, Endo A, Torizuka K 2003Appl. Phys. B:Lasers Opt. 76 497

    [6]

    Wang Z H, Liu C, Shen Z W, Zhang Q, Teng H, Wei Z Y 2011Opt. Lett. 36 3194

    [7]

    Dalui M, Wang W M, Trivikram T M, Sarkar S, Tata S, Jha J, Ayyub P, Sheng Z M, Krishnamurthy M 2015Sci. Rep. 5 11930

    [8]

    Remington B A, Takabe H 1999Science 284 1488

    [9]

    Gilbertson S 2010Phys. Rev. A 81 043810

    [10]

    Schmidt B E, Shiner A D, Lassonde P, Kieffer J C, Corkum P B, Villeneuve D M, Legare F 2011Opt. Express 19 6858

    [11]

    Tian Y C, Tian H, Wu Y L, Zhu L L, Tao L Q, Zhang W, Shu Y, Xie D, Yang Y, Wei Z Y, Lu X H, Shih C K, Zhao J M 2015Sci. Rep. 5 10582

    [12]

    Liu J, Li X F, Chen X W, Jiang Y L, Li R X 2007Acta Phys. Sin. 56 1375(in Chinese)[刘军, 李小芳, 陈晓伟, 姜永亮, 李儒新, 徐至展2007物理学报56 1375]

    [13]

    Ye P, He X K, Teng H, Zhan M J, Zhong S Y, Zhang W, Wang L F, Wei Z Y 2014Phys. Rev. Lett. 113 073601

    [14]

    Wang L F, He X K, Teng H, Yun C X, Zhang W, Wei Z Y 2015Appl. Phys. B:Lasers Opt. 121 81

    [15]

    Goulielmakis E 2008Science 320 1614

    [16]

    Wu Y, Cunningham E, Zang H, Li J, Chini M, Wang X, Wang Y, Zhao K, Chang Z 2013Appl. Phys. Lett. 102 201104

    [17]

    Zhang W, Teng H, Wang Z H, Shen Z W, Wei Z Y 2013Appl. Opt. 52 1517

  • [1] 张鹏, 滕浩, 杨浩, 吕仁冲, 王柯俭, 朱江峰, 魏志义. 基于Herriott型多通结构的块材料展宽与棱栅对色散补偿的啁啾脉冲放大. 物理学报, 2022, 71(11): 114202. doi: 10.7498/aps.71.20212381
    [2] 王楠, 阮双琛. 啁啾脉冲放大激光系统中展宽器色散的解析算法. 物理学报, 2020, 69(2): 024201. doi: 10.7498/aps.69.20191587
    [3] 李贺, 陈安民, 于丹, 李苏宇, 金明星. 温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响. 物理学报, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [4] 杨帅帅, 滕浩, 何鹏, 黄杭东, 王兆华, 董全力, 魏志义. 基于大基模体积的10 mJ飞秒钛宝石激光再生放大器. 物理学报, 2017, 66(10): 104209. doi: 10.7498/aps.66.104209
    [5] 时雷, 马挺, 吴浩煜, 孙青, 马金栋, 路桥, 毛庆和. 基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性. 物理学报, 2016, 65(8): 084203. doi: 10.7498/aps.65.084203
    [6] 赵冠凯, 刘军, 李儒新. 基于多光子脉冲内干涉相位扫描法对飞秒激光脉冲进行相位测量和补偿的研究. 物理学报, 2014, 63(16): 164207. doi: 10.7498/aps.63.164207
    [7] 沈忠伟, 王兆华, 范海涛, 秦爽, 滕浩, 何鹏, 魏志义. 输出能量4mJ的1kHz飞秒掺钛蓝宝石激光再生放大研究. 物理学报, 2014, 63(10): 104211. doi: 10.7498/aps.63.104211
    [8] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义. 反射式棱栅对展宽器用于啁啾脉冲放大激光的研究. 物理学报, 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [9] 刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义. 高能量环形长腔再生放大啁啾脉冲激光的研究. 物理学报, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [10] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究. 物理学报, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [11] 葛绪雷, 马景龙, 郑轶, 鲁欣, 蒋刚, 李玉同, 魏志义, 张杰. 多脉冲序列飞秒钛宝石激光的啁啾脉冲放大. 物理学报, 2012, 61(21): 214206. doi: 10.7498/aps.61.214206
    [12] 谢旭东, 朱启华, 曾小明, 王逍, 黄小军, 左言磊, 张颖, 周凯南, 黄征. 钕玻璃啁啾脉冲放大器产生百焦耳亚皮秒脉冲. 物理学报, 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [13] 刘 军, 李小芳, 陈晓伟, 姜永亮, 李儒新, 徐至展. 1 kHz-0.1 TW高效率钛宝石激光放大器. 物理学报, 2007, 56(3): 1375-1378. doi: 10.7498/aps.56.1375
    [14] 冯伟伟, 林礼煌, 王文耀, 李儒新, 汪丽春. 用钛宝石再生放大器产生高重复率啁啾脉冲列. 物理学报, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [15] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速. 物理学报, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [16] 孙振红, 柴 路, 张志刚, 王清月, 张伟力, 袁晓东, 黄小军. 马丁内兹型啁啾脉冲放大系统高阶色散的混合补偿. 物理学报, 2005, 54(2): 777-781. doi: 10.7498/aps.54.777
    [17] 令维军, 王兆华, 王 鹏, 贾玉磊, 田金荣, 魏志义. 双向抽运钛宝石的高效率多通脉冲主放大研究. 物理学报, 2005, 54(3): 1208-1212. doi: 10.7498/aps.54.1208
    [18] 王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫. 可用于超精细加工的高重复率、高光束质量飞秒再生放大脉冲的产生研究. 物理学报, 2004, 53(1): 87-92. doi: 10.7498/aps.53.87
    [19] 王淮生, 孙大睿, 张志刚, 柴 路, 王清月. 啁啾飞秒激光脉冲形成的光纤光栅的Bragg反射特性. 物理学报, 2003, 52(9): 2185-2189. doi: 10.7498/aps.52.2185
    [20] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计. 物理学报, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
计量
  • 文章访问数:  4138
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-12
  • 修回日期:  2016-10-10
  • 刊出日期:  2016-11-05

18 mJ,100 Hz飞秒钛宝石激光放大器

  • 1. 首都医科大学附属北京同仁医院, 北京同仁眼科中心, 北京市眼科研究所; 北京市眼科学与视觉科学重点实验室; 国家眼科诊断与治疗工程技术研究中心, 北京 100005;
  • 2. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190
  • 通信作者: 张伟, zhangwei0724@163.com;zywei@iphy.ac.cn ; 魏志义, zhangwei0724@163.com;zywei@iphy.ac.cn
    基金项目: 国家重大科学仪器设备开发专项基金(批准号:2012YQ120047)和国家自然科学基金(批准号:11434016)资助的课题.

摘要: 采用环形腔再生放大及四通放大的两级放大方案,在重复频率100 Hz、单脉冲能量75.1 mJ的倍频Nd:YAG激光抽运下,通过啁啾脉冲放大飞秒钛宝石激光,获得了单脉冲能量25.4 mJ的放大输出,对应能量转换效率33.8%.经光栅压缩器补偿色散后的单脉冲能量为18.3 mJ,脉冲宽度为37.8 fs,对应峰值功率0.48 TW.测量其脉冲能量稳定性为3.6%,光束质量M2因子在X和Y方向上分别为1.8,1.6.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回