搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射

付丽丽 常峻巍 陈佳琪 张兰芝 郝作强

引用本文:
Citation:

平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射

付丽丽, 常峻巍, 陈佳琪, 张兰芝, 郝作强

Filamentation and supercontinuum emission generated from flattened femtosecond laser beam by use of axicon in fused silica

Fu Li-Li, Chang Jun-Wei, Chen Jia-Qi, Zhang Lan-Zhi, Hao Zuo-Qiang
PDF
HTML
导出引用
  • 实验研究了平顶飞秒激光经圆锥透镜后在熔融石英中的成丝及超连续辐射. 与高斯飞秒激光的成丝对比发现, 平顶飞秒激光可以获得在圆锥透镜焦深区域内强度分布更为均匀的等离子体细丝, 这一特征更有利于飞秒激光在固体介质中进行微纳加工等领域的应用. 并且, 在不损伤熔融石英的条件下, 平顶飞秒激光成丝可以获得更高能量、更高转换效率的超连续辐射, 这是因为若产生光强相近的细丝, 平顶飞秒激光所需的初始激光能量更高, 此激光能量下产生的细丝长度更长、均匀性更好.
    It is important to control the femtosecond laser filamentation and the supercontinuum (SC) for their potential applications. The use of axicon is beneficial to the filamentation elongation and SC enhancement, because the axicon can convert the incident laser into a Bessel beam and forms a unique longer depth of focus region. On the other hand, the flattened laser beam which has a uniform distribution of the beam intensity, can propagate in condense media with a higher incident energy than that of Gaussian laser beam. It has unique advantages in forming a SC with high energy and high conversion efficiency. In this paper, we combine the use of axicon and the flattened laser beam to form filament and SC in fused silica. First, we study the filamentation generated by the Gaussian beam and the flattened beam, respectively, with the same incident pulse energy (672 μJ). The results show that the flattened beam can generate filament with relative uniform intensity distribution in the focal depth of the axicon and the intensity is relatively smaller than that of the Gaussian beam. It suggests that the flattened laser beam can propagate in fused silica with a higher energy than Gaussian beam. Second, we study the filamentation of the flattened beam of 1.319 mJ. In this case, the filament intensity is close to that of the Gaussian beam with 672 μJ. Moreover, the filamentation of the flattened beam with 1.319 mJ is longer and the intensity distribution is more uniform than that of the Gaussian beam with 672 μJ. Therefore, a flattened laser beam can generate the SC with a higher energy than that of the Gaussian beam in fused silica. The comparison of the spectra shows that the relative spectral intensity of flattened beam with 1.319 mJ in the range of 550–700 nm is much higher than that of the Gaussian beam with 672 μJ. The conversion efficiency of the Gaussian beam and the flattened beam is 32.58% and 39.59%, respectively. It can be seen that the flattened laser beam has advantages not only in generating long and uniform filament, but also in generating the intense SC. This approach is helpful to many applications, such as white light LIDAR and micro-nano processing.
      通信作者: 张兰芝, lzzhang@sdnu.edu.cn ; 郝作强, zqhao@sdnu.edu.cn
    • 基金项目: 国家级-国家自然科学基金重点项目(11774038, 11474039, 11274053)
      Corresponding author: Zhang Lan-Zhi, lzzhang@sdnu.edu.cn ; Hao Zuo-Qiang, zqhao@sdnu.edu.cn
    [1]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73Google Scholar

    [2]

    Zhao X M, Diels J C, Wang C Y, Elizondo J M 1995 IEEE J. Quantum Electron 31 599Google Scholar

    [3]

    Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, André Y B, Mysyrowicz A, Sauerbrey R, Wolf J P, Wöste L 2003 Science 301 61Google Scholar

    [4]

    Nguyen N T, Saliminia A, Liu W, Chin S L, Vallée R 2003 Opt. Lett. 28 1591Google Scholar

    [5]

    Kasparian J, Rohwetter P, Wöste L, Wolf J P 2012 J. Phys. D: Appl. Phys. 45 293001Google Scholar

    [6]

    Dogariu A, Michael J, Scully M O, Miles R B 2011 Science 331 442Google Scholar

    [7]

    Jhajj N, Rosenthal E W, Birnbaum R, Wahlstrand J K, Milchberg H M 2014 Phys. Rev. X 4 011027

    [8]

    Wang T J, Daigle J F, Yuan S, Théberge F, Châteauneuf M, Dubois J, Roy G, Zeng H, Chin S L 2011 Phys. Rev. A 83 053801Google Scholar

    [9]

    Watanabe W, Itoh K 2001 Jpn. J. Appl. Phys. 40 592Google Scholar

    [10]

    Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747Google Scholar

    [11]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [12]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [13]

    Tu H, Boppart S A 2013 Laser Photonics Rev. 7 628Google Scholar

    [14]

    Polynkin P, Kolesik M, Roberts A, Roberts A, Faccio D, Trapani P D, Moloney J 2008 Opt. Express 16 15733Google Scholar

    [15]

    Shi Y, Chen A, Jiang Y F, Li S Y, Jin M X 2016 Opt. Conmmun. 367 174Google Scholar

    [16]

    Xi T T, Zhao Z J, Hao Z Q 2014 J. Opt. Soc. Am. B 31 321Google Scholar

    [17]

    Dota K, Pathak A, Dharmadhikari J A, Mathur D, Dharmadhikari A K 2012 Phys. Rev. A 86 023808

    [18]

    常峻巍, 许梦宁, 王頔, 朱瑞晗, 奚婷婷, 张兰芝, 李东伟, 郝作强 2019 光学学报 39 0126021

    Chang J W, Xu M N, Wang D, Zhu R H, Xi T T, Zhang L Z, Li D W, Hao Z Q 2019 Acta Opt. Sin. 39 0126021

    [19]

    张肖玲, 奚婷婷 2017 中国科学大学学报 34 119

    Zhang X L, Xi T T 2017 J. Univ. Chin. Acad. Sci. 34 119

    [20]

    周宁, 张兰芝, 李东伟, 常峻巍, 王毕艺, 汤磊, 林景全, 郝作强 2018 物理学报 67 174205Google Scholar

    Zhou N, Zhang L Z, Li D W, Chang J W, Wang B Y, Tang L, Lin J Q, Hao Z Q 2018 Acta Phys. Sin. 67 174205Google Scholar

    [21]

    王飞, 张兰芝, 常峻巍, 李东伟, 郝作强 2018 应用物理 8 228Google Scholar

    Wang F, Zhang L Z, Chang J W, Li D W, Hao Z Q 2018 Appl. Phys. 8 228Google Scholar

    [22]

    Akturk S, Zhou B, Franco M, Couairon A, Mysyrowicz A 2009 Opt. Commun. 282 129

    [23]

    Sun X D, Gao H, Zeng B, Su X Q, Liu W W, Cheng Y, Xu Z Z, Mu G G 2012 Opt. Lett. 37 857Google Scholar

    [24]

    Majus D, Dubietis A 2013 J. Opt. Soc. Am. B 30 994Google Scholar

    [25]

    Talebpour A, Petit S, Chin S L 1999 Opt. Commun. 171 285Google Scholar

    [26]

    Wu Z X, Jiang H B, Luo L, Guo H C, Yang H, Gong Q H 2002 Opt. Lett. 27 448Google Scholar

    [27]

    Liu W, Chin S L, Kosareva O, Golubtsov I S, Kandidov V P 2003 Opt. Commun. 225 193Google Scholar

    [28]

    Zhang L Z, Xi T T, Hao Z Q, Lin J Q 2016 J. Phys. D: App. Phys. 49 115201Google Scholar

    [29]

    Chang J W, Zhu R H, Xi T T, Xu M N, Wang D, Zhang L Z, Li D W, Hao Z Q 2019 Chin. Opt. Lett. 17 123201Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Experimental setup.

    图 2  飞秒高斯激光((a), (c), (e))和平顶激光((b), (d), (f))的初始光斑((c), (d))及其在熔融石英中成丝的荧光图像((a), (b)), 以及成丝轴线上的荧光强度((e), (f))随传输距离的演化. 实验中使用的激光脉冲能量均为672 μJ. 图中箭头方向表示激光传输方向

    Fig. 2.  Fluorescence image ((a), (b)) and the on-axis intensity ((e), (f)) of the filament formed by Gaussian beam ((a), (e)) and flattened beam ((b), (f)) respectively, with an incident energy of 672 μJ; the intensity distributions in the cross sections of (b) Gaussian beam and (d) flattened beam. The inset arrow indicates the laser propagation direction.

    图 3  入射能量为1.319 mJ的平顶激光经圆锥透镜在熔融石英中形成的细丝荧光图像(a)及其光轴上的强度随传输距离的演化(b)

    Fig. 3.  Fluorescence image (a) and the on-axis intensity of the filament (b) formed by flattened beam with incident energy of 1.319 mJ.

    图 4  入射能量为672 μJ的高斯光束与672 μJ, 1.319 mJ的平顶光束成丝产生的超连续辐射光谱

    Fig. 4.  Supercontinuum spectra from filamentation of the Gaussian beam with an incident energy of 672 μJ and flattened beam with an incident energy of 672 μJ and 1.319 mJ, respectively.

  • [1]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73Google Scholar

    [2]

    Zhao X M, Diels J C, Wang C Y, Elizondo J M 1995 IEEE J. Quantum Electron 31 599Google Scholar

    [3]

    Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, André Y B, Mysyrowicz A, Sauerbrey R, Wolf J P, Wöste L 2003 Science 301 61Google Scholar

    [4]

    Nguyen N T, Saliminia A, Liu W, Chin S L, Vallée R 2003 Opt. Lett. 28 1591Google Scholar

    [5]

    Kasparian J, Rohwetter P, Wöste L, Wolf J P 2012 J. Phys. D: Appl. Phys. 45 293001Google Scholar

    [6]

    Dogariu A, Michael J, Scully M O, Miles R B 2011 Science 331 442Google Scholar

    [7]

    Jhajj N, Rosenthal E W, Birnbaum R, Wahlstrand J K, Milchberg H M 2014 Phys. Rev. X 4 011027

    [8]

    Wang T J, Daigle J F, Yuan S, Théberge F, Châteauneuf M, Dubois J, Roy G, Zeng H, Chin S L 2011 Phys. Rev. A 83 053801Google Scholar

    [9]

    Watanabe W, Itoh K 2001 Jpn. J. Appl. Phys. 40 592Google Scholar

    [10]

    Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747Google Scholar

    [11]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [12]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [13]

    Tu H, Boppart S A 2013 Laser Photonics Rev. 7 628Google Scholar

    [14]

    Polynkin P, Kolesik M, Roberts A, Roberts A, Faccio D, Trapani P D, Moloney J 2008 Opt. Express 16 15733Google Scholar

    [15]

    Shi Y, Chen A, Jiang Y F, Li S Y, Jin M X 2016 Opt. Conmmun. 367 174Google Scholar

    [16]

    Xi T T, Zhao Z J, Hao Z Q 2014 J. Opt. Soc. Am. B 31 321Google Scholar

    [17]

    Dota K, Pathak A, Dharmadhikari J A, Mathur D, Dharmadhikari A K 2012 Phys. Rev. A 86 023808

    [18]

    常峻巍, 许梦宁, 王頔, 朱瑞晗, 奚婷婷, 张兰芝, 李东伟, 郝作强 2019 光学学报 39 0126021

    Chang J W, Xu M N, Wang D, Zhu R H, Xi T T, Zhang L Z, Li D W, Hao Z Q 2019 Acta Opt. Sin. 39 0126021

    [19]

    张肖玲, 奚婷婷 2017 中国科学大学学报 34 119

    Zhang X L, Xi T T 2017 J. Univ. Chin. Acad. Sci. 34 119

    [20]

    周宁, 张兰芝, 李东伟, 常峻巍, 王毕艺, 汤磊, 林景全, 郝作强 2018 物理学报 67 174205Google Scholar

    Zhou N, Zhang L Z, Li D W, Chang J W, Wang B Y, Tang L, Lin J Q, Hao Z Q 2018 Acta Phys. Sin. 67 174205Google Scholar

    [21]

    王飞, 张兰芝, 常峻巍, 李东伟, 郝作强 2018 应用物理 8 228Google Scholar

    Wang F, Zhang L Z, Chang J W, Li D W, Hao Z Q 2018 Appl. Phys. 8 228Google Scholar

    [22]

    Akturk S, Zhou B, Franco M, Couairon A, Mysyrowicz A 2009 Opt. Commun. 282 129

    [23]

    Sun X D, Gao H, Zeng B, Su X Q, Liu W W, Cheng Y, Xu Z Z, Mu G G 2012 Opt. Lett. 37 857Google Scholar

    [24]

    Majus D, Dubietis A 2013 J. Opt. Soc. Am. B 30 994Google Scholar

    [25]

    Talebpour A, Petit S, Chin S L 1999 Opt. Commun. 171 285Google Scholar

    [26]

    Wu Z X, Jiang H B, Luo L, Guo H C, Yang H, Gong Q H 2002 Opt. Lett. 27 448Google Scholar

    [27]

    Liu W, Chin S L, Kosareva O, Golubtsov I S, Kandidov V P 2003 Opt. Commun. 225 193Google Scholar

    [28]

    Zhang L Z, Xi T T, Hao Z Q, Lin J Q 2016 J. Phys. D: App. Phys. 49 115201Google Scholar

    [29]

    Chang J W, Zhu R H, Xi T T, Xu M N, Wang D, Zhang L Z, Li D W, Hao Z Q 2019 Chin. Opt. Lett. 17 123201Google Scholar

  • [1] 尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁. 高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究. 物理学报, 2024, 73(9): 095202. doi: 10.7498/aps.73.20231625
    [2] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [3] 张云, 林爽, 张云峰, 张鹤, 常明莹, 于淼, 王雅秋, 蔡晓明, 姜远飞, 陈安民, 李苏宇, 金明星. 飞秒激光在空气中成丝诱导氮荧光发射的空间分布. 物理学报, 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [4] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度. 物理学报, 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [5] 常峻巍, 朱瑞晗, 张兰芝, 奚婷婷, 郝作强. 整形飞秒激光脉冲的成丝超连续辐射控制. 物理学报, 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [6] 李贺, 陈安民, 于丹, 李苏宇, 金明星. 温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响. 物理学报, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [7] 周宁, 张兰芝, 李东伟, 常峻巍, 王毕艺, 汤磊, 林景全, 郝作强. 飞秒平顶光束经微透镜阵列在熔融石英中的成丝及其超连续辐射. 物理学报, 2018, 67(17): 174205. doi: 10.7498/aps.67.20180306
    [8] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [9] 高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全. 基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量. 物理学报, 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [10] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布. 物理学报, 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [11] 冯柳宾, 鲁欣, 刘晓龙, 葛绪雷, 马景龙, 李玉同, 陈黎明, 董全力, 王伟民, 滕浩, 王兆华, 盛政明, 魏志义, 贺端威, 张杰. 飞秒激光离焦抽运熔融石英产生超连续白光的实验研究. 物理学报, 2012, 61(17): 174206. doi: 10.7498/aps.61.174206
    [12] 张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣. 飞秒激光成丝过程中由等离子体光栅引起的超连续谱增强与转移. 物理学报, 2012, 61(18): 184209. doi: 10.7498/aps.61.184209
    [13] 季忠刚, 王占新, 刘建胜, 李儒新. 激光波前相位因子对飞秒脉冲激光成丝动力学的影响. 物理学报, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [14] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [15] 李 昆, 徐妙华, 金 展, 刘运全, 王兆华, 令维军, 张 杰. 对超短脉冲强激光在大气通道中产生的三次谐波偏振特性及白光光谱调制特性的研究. 物理学报, 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [16] 陈潇潇, 李斌成, 杨亚培. 光学薄膜测量时平顶光束激励的表面热透镜理论模型. 物理学报, 2006, 55(9): 4673-4678. doi: 10.7498/aps.55.4673
    [17] 李曙光, 冀玉领, 周桂耀, 侯蓝田, 王清月, 胡明列, 栗岩峰, 魏志义, 张 军, 刘晓东. 多孔微结构光纤中飞秒激光脉冲超连续谱的产生. 物理学报, 2004, 53(2): 478-483. doi: 10.7498/aps.53.478
    [18] 胡明列, 王清月, 栗岩峰, 王 专, 张志刚, 柴 路, 章若冰. 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究. 物理学报, 2004, 53(12): 4243-4247. doi: 10.7498/aps.53.4243
    [19] 李玉同, 张杰, 陈黎明, 赵理曾, 夏江帆, 腾浩, 李英骏, 朱成银, 江文勉. 对飞秒激光等离子体中成丝现象的研究. 物理学报, 2001, 50(2): 204-208. doi: 10.7498/aps.50.204
    [20] 张伟力, 章若冰, 王清月. 宽谱带飞秒激光超连续谱特性的研究. 物理学报, 1993, 42(12): 1938-1941. doi: 10.7498/aps.42.1938
计量
  • 文章访问数:  7700
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-12-17
  • 刊出日期:  2020-02-20

/

返回文章
返回