搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒平顶光束经微透镜阵列在熔融石英中的成丝及其超连续辐射

周宁 张兰芝 李东伟 常峻巍 王毕艺 汤磊 林景全 郝作强

引用本文:
Citation:

飞秒平顶光束经微透镜阵列在熔融石英中的成丝及其超连续辐射

周宁, 张兰芝, 李东伟, 常峻巍, 王毕艺, 汤磊, 林景全, 郝作强

Filamentation and supercontinuum emission with flattened femtosecond laser beam by use of microlens array in fused silica

Zhou Ning, Zhang Lan-Zhi, Li Dong-Wei, Chang Jun-Wei, Wang Bi-Yi, Tang Lei, Lin Jing-Quan, Hao Zuo-Qiang
PDF
导出引用
  • 实验研究了平顶激光光束经微透镜阵列在熔融石英中成丝的演化以及超连续辐射的产生,并进一步与高斯光束的成丝和超连续辐射进行了对比研究.分别对这两种光束的多丝传输进行了横向和纵向成像.结果表明,使用平顶光束可以获得更为均匀的多丝分布,成丝的起点也更为一致;尤其重要的是,相对于高斯光束,平顶光束可以使用更高的入射激光脉冲能量而不会造成介质的损伤,从而可以获得更高脉冲能量和更高转换效率的超连续辐射.
    The high power supercontinuum from femtosecond filamentation has attracted great attention for recent years due to its various applications. In our previous researches, we have used microlens array to obtain filament-array in fused silica and to generate the high spectral power supercontinuum. To further improve the ability to generate the high power supercontinuum by using microlens array, in this work we adopt flattened femtosecond laser beam with a flat-top energy distribution to generate filament-array in fused silica and supercontinuum. By using a laser beam shaping system consisting of aspherical lenses, the Gaussian intensity distribution of initial femtosecond laser beam is converted into a flat-top distribution. The flattened laser beam is focused by a microlens array into a fused silica block, and consequently a filament array is formed in the block. Our experimental results show that compared with the filaments formed by a Gaussian laser beam, the filaments formed by the flattened beam have a uniform distribution and almost the same onset due to the initial uniform energy distribution across the section of the laser beam. Furthermore, the spectral stability of supercontinuum emission is used to evaluate the damage of the fused silica block. It is demonstrated that the flattened beam with a pulse energy of 1.9 mJ does not induce permanent damage to the fused silica block, while the Gaussian beam with a relatively low pulse energy of 1.46 mJ leads to the damage to the block. Therefore, a higher incident laser pulse energy is allowed in the case of flattened laser beam, and consequently stronger supercontinuum generation than in the case of the Gaussian laser beam can be expected. In our experiments, the relative spectral intensity of flattened beam generated supercontinuum in the visible range is about twice higher than that for the Gaussian beam case. The conversion efficiencies of the supercontinuum for the two kinds of laser beams are further analyzed. The conversion efficiencies are 49% and 55% for the cases of Gaussian and flattened beams respectively. In this work, we demonstrate the formation of filament array with uniform distribution in fused silica, and, as a proof of principle, we also demonstrate the high power supercontinuum generation with high conversion efficiency from the filamentation, by using flattened femtosecond laser beam as the incident laser and microlens array as the focusing element. This approach provides a way to obtain a high power femtosecond supercontinuum source which is of great importance in many applications such as some absorption spectroscopies based on coherent supercontinuum light.
      通信作者: 张兰芝, lzzhang@cust.edu.cn;zqhao@cust.edu.cn ; 郝作强, lzzhang@cust.edu.cn;zqhao@cust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474039,11774038,11274053)、吉林省科技厅项目(批准号:20170519018JH)和长春理工大学科技创新基金(批准号:XJJLG-2016-02)资助的课题.
      Corresponding author: Zhang Lan-Zhi, lzzhang@cust.edu.cn;zqhao@cust.edu.cn ; Hao Zuo-Qiang, lzzhang@cust.edu.cn;zqhao@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474039, 11774038, 11274053), the Science and Technology Department of Jilin Province, China (Grant No. 20170519018JH), and the Innovation Fund of Changchun University of Science and Technology, China (Grant No. XJJLG-2016-02).
    [1]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73

    [2]

    Becker A, Aközbek N, Vijayalakshmi K, Oral E, Bowden C M, Chin S L 2001 Appl. Phys. B 73 287

    [3]

    Chin S L, Talebpour A, Yang J, Petit S, Kandidov V P, Kosareva O G, Tamarov M P 2002 Appl. Phys. B 74 67

    [4]

    Zhang L Z, Xi T T, Hao Z Q, Lin J Q 2016 J. Phys. D 49 115201

    [5]

    Shi L P, Li W X, Wang Y D, Liu X, Ding L E, Zeng H P 2011 Phys. Rev. Lett. 107 095004

    [6]

    Yuan S, Wang T J, Lu P F, Chin S L, Zeng H P 2014 Appl. Phys. Lett. 104 091113

    [7]

    Yuan S, Wang T J, Teranishi Y, Sridharan A, Lin S H, Zeng H P, Chin S L 2013 Appl. Phys. Lett. 102 224102

    [8]

    Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747

    [9]

    Alshershby M, Hao Z Q, Camino A, Lin J Q 2013 Opt. Commun. 296 87

    [10]

    Matsuo S, Juodkazis S, Misawa H 2005 Appl. Phys. A 80 683

    [11]

    Zafar S, Li D W, Hao Z Q, Lin J Q 2016 Optik 130 765

    [12]

    Luo Q, Hosseini S A, Liu W W, Gravel J F, Kosareva O G, Panov N A, Aközbek N, Kandidov V P, Roy G, Chin S L 2005 Appl. Phys. B 80 35

    [13]

    Hao Z Q, Zhang J, Xi T T, Yuan X H, Zheng Z Y, Lu X, Yu M Y, Li Y T, Wang Z H, Zhao W, Wei Z Y 2007 Opt. Express 15 16102

    [14]

    Bérubé J, Vallée R, Bernier M, Kosareva O, Panov N, Kandidov V, Chin S L 2010 Opt. Express 18 1801

    [15]

    Liu J S, Schroeder H, Chin S L, Li R X, Xu Z Z 2005 Appl. Phys. Lett. 87 161105

    [16]

    Majus D, Jukna V, Valiulis G, Dubietis A 2009 Phys. Rev. A 79 033843

    [17]

    Camino A, Hao Z Q, Liu X 2013 Opt. Express 21 7908

    [18]

    Dickey F M, Weichman L S, Shagam R N 2000 Proc. SPIE 4065 338

    [19]

    Gao Y H, An Z Y, Li N N 2011 Optics Precis. Eng. 19 1464 (in Chinese)[高瑀含, 安志勇, 李娜娜 2011 光学精密工程 19 1464]

    [20]

    Wippermann F C, Zeitner U, Dannberg P, Bräuer A, Sinzinger S 2007 Proc. SPIE 6663 666309

    [21]

    Shealy D L, Hoffnagle J A 2006 Appl. Opt. 5876 5118

  • [1]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73

    [2]

    Becker A, Aközbek N, Vijayalakshmi K, Oral E, Bowden C M, Chin S L 2001 Appl. Phys. B 73 287

    [3]

    Chin S L, Talebpour A, Yang J, Petit S, Kandidov V P, Kosareva O G, Tamarov M P 2002 Appl. Phys. B 74 67

    [4]

    Zhang L Z, Xi T T, Hao Z Q, Lin J Q 2016 J. Phys. D 49 115201

    [5]

    Shi L P, Li W X, Wang Y D, Liu X, Ding L E, Zeng H P 2011 Phys. Rev. Lett. 107 095004

    [6]

    Yuan S, Wang T J, Lu P F, Chin S L, Zeng H P 2014 Appl. Phys. Lett. 104 091113

    [7]

    Yuan S, Wang T J, Teranishi Y, Sridharan A, Lin S H, Zeng H P, Chin S L 2013 Appl. Phys. Lett. 102 224102

    [8]

    Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747

    [9]

    Alshershby M, Hao Z Q, Camino A, Lin J Q 2013 Opt. Commun. 296 87

    [10]

    Matsuo S, Juodkazis S, Misawa H 2005 Appl. Phys. A 80 683

    [11]

    Zafar S, Li D W, Hao Z Q, Lin J Q 2016 Optik 130 765

    [12]

    Luo Q, Hosseini S A, Liu W W, Gravel J F, Kosareva O G, Panov N A, Aközbek N, Kandidov V P, Roy G, Chin S L 2005 Appl. Phys. B 80 35

    [13]

    Hao Z Q, Zhang J, Xi T T, Yuan X H, Zheng Z Y, Lu X, Yu M Y, Li Y T, Wang Z H, Zhao W, Wei Z Y 2007 Opt. Express 15 16102

    [14]

    Bérubé J, Vallée R, Bernier M, Kosareva O, Panov N, Kandidov V, Chin S L 2010 Opt. Express 18 1801

    [15]

    Liu J S, Schroeder H, Chin S L, Li R X, Xu Z Z 2005 Appl. Phys. Lett. 87 161105

    [16]

    Majus D, Jukna V, Valiulis G, Dubietis A 2009 Phys. Rev. A 79 033843

    [17]

    Camino A, Hao Z Q, Liu X 2013 Opt. Express 21 7908

    [18]

    Dickey F M, Weichman L S, Shagam R N 2000 Proc. SPIE 4065 338

    [19]

    Gao Y H, An Z Y, Li N N 2011 Optics Precis. Eng. 19 1464 (in Chinese)[高瑀含, 安志勇, 李娜娜 2011 光学精密工程 19 1464]

    [20]

    Wippermann F C, Zeitner U, Dannberg P, Bräuer A, Sinzinger S 2007 Proc. SPIE 6663 666309

    [21]

    Shealy D L, Hoffnagle J A 2006 Appl. Opt. 5876 5118

  • [1] 尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁. 高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究. 物理学报, 2024, 73(9): 095202. doi: 10.7498/aps.73.20231625
    [2] 范海玲, 郭志坚, 李明强, 卓红斌. 等离子体中涡旋光束自聚焦与成丝现象的模拟研究. 物理学报, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [3] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [4] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [5] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度. 物理学报, 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [6] 常峻巍, 朱瑞晗, 张兰芝, 奚婷婷, 郝作强. 整形飞秒激光脉冲的成丝超连续辐射控制. 物理学报, 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [7] 付丽丽, 常峻巍, 陈佳琪, 张兰芝, 郝作强. 平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射. 物理学报, 2020, 69(4): 044202. doi: 10.7498/aps.69.20191350
    [8] 陈芳萍, 张晓婷, 刘楚嘉, 漆宇, 庄其仁. 采用衍射掩模产生白光横向平顶光束. 物理学报, 2018, 67(14): 144202. doi: 10.7498/aps.67.20180030
    [9] 李贺, 陈安民, 于丹, 李苏宇, 金明星. 温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响. 物理学报, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [10] 王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪. 中波红外微型静态傅里叶变换光谱仪的设计与分析. 物理学报, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [11] 严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰. 基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析. 物理学报, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [12] 陈国柱, 沈咏, 刘曲, 邹宏新. 利用椭圆高斯光束产生266nm紫外连续激光. 物理学报, 2014, 63(5): 054204. doi: 10.7498/aps.63.054204
    [13] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布. 物理学报, 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [14] 冯柳宾, 鲁欣, 刘晓龙, 葛绪雷, 马景龙, 李玉同, 陈黎明, 董全力, 王伟民, 滕浩, 王兆华, 盛政明, 魏志义, 贺端威, 张杰. 飞秒激光离焦抽运熔融石英产生超连续白光的实验研究. 物理学报, 2012, 61(17): 174206. doi: 10.7498/aps.61.174206
    [15] 张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣. 飞秒激光成丝过程中由等离子体光栅引起的超连续谱增强与转移. 物理学报, 2012, 61(18): 184209. doi: 10.7498/aps.61.184209
    [16] 张前安, 吴逢铁, 郑维涛, 马亮. 新型锥透镜产生局域空心光束. 物理学报, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [17] 陈东, 余本海, 汤清彬. 中红外组合激光场调控宽带超连续谱的产生. 物理学报, 2010, 59(7): 4564-4570. doi: 10.7498/aps.59.4564
    [18] 陈潇潇, 李斌成, 杨亚培. 光学薄膜测量时平顶光束激励的表面热透镜理论模型. 物理学报, 2006, 55(9): 4673-4678. doi: 10.7498/aps.55.4673
    [19] 程光华, 王屹山, 刘 青, 赵 卫, 陈国夫. 用飞秒激光脉冲在PMMA内页面式写入三维光存储的研究. 物理学报, 2004, 53(2): 436-440. doi: 10.7498/aps.53.436
    [20] 文双春, 钱列加, 范滇元. 强光束局部小尺度调制致多路成丝现象研究. 物理学报, 2003, 52(7): 1640-1644. doi: 10.7498/aps.52.1640
计量
  • 文章访问数:  6276
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-07
  • 修回日期:  2018-03-13
  • 刊出日期:  2018-09-05

/

返回文章
返回