搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用椭圆高斯光束产生266nm紫外连续激光

陈国柱 沈咏 刘曲 邹宏新

引用本文:
Citation:

利用椭圆高斯光束产生266nm紫外连续激光

陈国柱, 沈咏, 刘曲, 邹宏新

Generation of 266 nm continuous-wave with elliptical Gaussian beams

Chen Guo-Zhu, Shen Yong, Liu Qu, Zou Hong-Xin
PDF
导出引用
  • 本文采用商用532 nm激光器作为基频光源,利用偏硼酸钡(β-BBO)晶体进行外腔倍频,实现了266 nm连续激光的高效输出. 文中详细模拟了BBO晶体中的束腰形状对倍频效率的影响,仿真和实验结果均表明椭圆高斯光束可以有效改善走离效应,提高倍频转换效率. 通过优化蝶形倍频腔,可以使椭圆高斯光束在腔内共振,当1 W基频光输入时可输出约180 mW的266 nm紫外连续激光,倍频转换效率达到18%.
    The 266 nm continuous-wave coherent radiation is generated by the second harmonic generation of a β-BBO crystal placed inside an external enhancement cavity. Its fundamental beam is a 532 nm laser from commercial production of Coherent Company. Impact of focusing shape of the crystal on the conversion efficiency is simulated detailedly. Theoretical and experimental results show that the elliptical focusing can decrease the walk-off effect and improve conversion efficiency of the second harmonic generation (SHG). We obtain experimentally the 266 nm radiation output of 180 mW with elliptical focusing in a BBO crystal using bowtie cavity when the fundamental wave input 1 W . The SHG conversion efficiency reaches 18%.
    • 基金项目: 国防科学技术大学科学研究计划项目(批准号:DC11-02-13)、湖南省自然科学基金(批准号:11JJ2004)和国家自然科学基金(批准号:11204374)资助的课题.
    • Funds: Project supported by the Science Research Program of National University of Defense Technology, China (Grant No. DC11-02-13), the Hunan Provincial Natural Science Foundation of China (Grant No. 11JJ2004), and the National Natural Science Foundation of China (Grant No. 11204374).
    [1]

    Jones-Bey H 1998 Laser Focus World 34 127

    [2]

    Knittel J, Kung A H 1997 Optics Letters 22 366

    [3]

    Tidwell S C, Seamans J F, Lowenthal D D 1993 Optics Letter 18 15

    [4]

    Liu Q, Yan X P, Fu X, Gong M, Wang D S 2009 Laser Physics Letters 6 3

    [5]

    Xiang Z, Ge J H, Zhao Z G, Wang S, Liu C, Chen J 2009 Chinese Optics Letters 7 502

    [6]

    He J L, Lu X Q, Jia Y L, Ma n B Y, Zhu S N, Zhu Y Y 2000 Acta Phys. Sin. 49 2106 (in Chinese) [何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元 2000 物理学报 49 2106]

    [7]

    Geng A C, Zhang H B, Wang G L, Bo Y, Xu Z Y, Wang X Q, Shen D Z 2007 Journal of Optoelectronics·Laser 18 767

    [8]

    Chen G F, Du G G, Wang X H 1999 Acta Photonica Sinica 28 8

    [9]

    Tan C Q, Zheng Q, Xue Q H 2005 Laser & Infrared 35 490

    [10]

    Wang L R, Wang G L, Zhang X, Liu L J, Wang X Y, Zhu Y, Chen C T 2012 Chinese Physics Letters 29 064203

    [11]

    Peng Y, Fang Z J, Zang E J 2011 Chinese Physics Letters 28 104207

    [12]

    Oka M, Liu L Y, Wiechmann W 1995 IEEE Journal of Selected Topics in Quantum Electronics. 1 859

    [13]

    Xu S, Cai H, Zeng H 2007 Optics Express 15 10576

    [14]

    Yuan X, Shen D Z, Wang X Q, Shen G Q 2005 Journal of Synthetic Crystals 34 102

    [15]

    Steinbach A, Rauner M, Cruz F C, Bergquist J C 1996 Optics Communications 123 207

    [16]

    Ostroumov V, Gmbh W S C, Luebeck B 2007 Proc. of SPIE 6451 1

    [17]

    Herskind P, Lindballe J, Clausen C 2007 Optics Letters 32 268

    [18]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys 39 35

    [19]

    Chen Y F, Chen Y C 2003 Appl. Phys. B 76 645

    [20]

    Hänsch T W, Couillaud B 1980 Opt. Commun. 35 441

  • [1]

    Jones-Bey H 1998 Laser Focus World 34 127

    [2]

    Knittel J, Kung A H 1997 Optics Letters 22 366

    [3]

    Tidwell S C, Seamans J F, Lowenthal D D 1993 Optics Letter 18 15

    [4]

    Liu Q, Yan X P, Fu X, Gong M, Wang D S 2009 Laser Physics Letters 6 3

    [5]

    Xiang Z, Ge J H, Zhao Z G, Wang S, Liu C, Chen J 2009 Chinese Optics Letters 7 502

    [6]

    He J L, Lu X Q, Jia Y L, Ma n B Y, Zhu S N, Zhu Y Y 2000 Acta Phys. Sin. 49 2106 (in Chinese) [何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元 2000 物理学报 49 2106]

    [7]

    Geng A C, Zhang H B, Wang G L, Bo Y, Xu Z Y, Wang X Q, Shen D Z 2007 Journal of Optoelectronics·Laser 18 767

    [8]

    Chen G F, Du G G, Wang X H 1999 Acta Photonica Sinica 28 8

    [9]

    Tan C Q, Zheng Q, Xue Q H 2005 Laser & Infrared 35 490

    [10]

    Wang L R, Wang G L, Zhang X, Liu L J, Wang X Y, Zhu Y, Chen C T 2012 Chinese Physics Letters 29 064203

    [11]

    Peng Y, Fang Z J, Zang E J 2011 Chinese Physics Letters 28 104207

    [12]

    Oka M, Liu L Y, Wiechmann W 1995 IEEE Journal of Selected Topics in Quantum Electronics. 1 859

    [13]

    Xu S, Cai H, Zeng H 2007 Optics Express 15 10576

    [14]

    Yuan X, Shen D Z, Wang X Q, Shen G Q 2005 Journal of Synthetic Crystals 34 102

    [15]

    Steinbach A, Rauner M, Cruz F C, Bergquist J C 1996 Optics Communications 123 207

    [16]

    Ostroumov V, Gmbh W S C, Luebeck B 2007 Proc. of SPIE 6451 1

    [17]

    Herskind P, Lindballe J, Clausen C 2007 Optics Letters 32 268

    [18]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys 39 35

    [19]

    Chen Y F, Chen Y C 2003 Appl. Phys. B 76 645

    [20]

    Hänsch T W, Couillaud B 1980 Opt. Commun. 35 441

计量
  • 文章访问数:  3950
  • PDF下载量:  1918
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-26
  • 修回日期:  2013-10-28
  • 刊出日期:  2014-03-05

利用椭圆高斯光束产生266nm紫外连续激光

  • 1. 国防科学技术大学理学院物理系, 长沙 410073
    基金项目: 国防科学技术大学科学研究计划项目(批准号:DC11-02-13)、湖南省自然科学基金(批准号:11JJ2004)和国家自然科学基金(批准号:11204374)资助的课题.

摘要: 本文采用商用532 nm激光器作为基频光源,利用偏硼酸钡(β-BBO)晶体进行外腔倍频,实现了266 nm连续激光的高效输出. 文中详细模拟了BBO晶体中的束腰形状对倍频效率的影响,仿真和实验结果均表明椭圆高斯光束可以有效改善走离效应,提高倍频转换效率. 通过优化蝶形倍频腔,可以使椭圆高斯光束在腔内共振,当1 W基频光输入时可输出约180 mW的266 nm紫外连续激光,倍频转换效率达到18%.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回