搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全保偏光纤结构的主振荡脉冲非线性放大系统

张彤 张维光 蔡亚君 胡晓鸿 冯野 王屹山 于佳

引用本文:
Citation:

基于全保偏光纤结构的主振荡脉冲非线性放大系统

张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳

Master oscillator pulse nonlinear amplifier system based on all polarization-maintaining fiber

Zhang Tong, Zhang Wei-Guang, Cai Ya-Jun, Hu Xiao-Hong, Feng Ye, Wang Yi-Shan, Yu Jia
PDF
HTML
导出引用
  • 提出了基于全保偏光纤结构的主振荡脉冲非线性放大系统, 该系统由基于半导体可饱和吸收镜锁模的直线型光纤振荡器、二级放大结构脉冲非线性光纤放大器和具有负色散的单模传导光纤的脉冲压缩器构成. 通过此系统获得了中心波长为1560 nm, 重复频率为200 MHz的超短激光脉冲, 脉冲半高全宽为44 fs, 单脉冲能量可达1 nJ. 随后, 使用厚度为1 mm的掺杂氧化镁的周期性极化铌酸锂晶体进行倍频工作. 实验中使用各类波片、准直及聚焦透镜将放大系统输出的脉冲激光聚焦在极化周期为19.8 μm的晶体位置上. 通过合理调整光路并优化准直聚焦参数获得了平均功率为60 mW, 中心波长为779 nm的倍频脉冲激光输出, 转换效率达到30%. 实验结果表明, 基于全保偏光纤结构的主振荡脉冲非线性放大系统可以产生数十飞秒量级特性良好的脉冲激光.
    The erbium-doped fiber oscillators, especially mode-locked fiber oscillators for generating femtosecond pulses, cannot meet the requirements for most of modern industrial applications because they are resticted by the low power and the limited wavelength range. In order to solve this problem, lots of efforts have been made both theoretically and experimentally, to improve the chirped pulse amplification (CPA) technology. The emergence of CPA technology greatly enhances the energy of laser pulses. The broadening and compressing of the laser pulses are both always dependent on the improving of spatial optical components, such as grating pairs. However, the use of this kind of method can increase the complexity of the amplification system to a certain extent. This may be an essential reason why more and more researchers pay attention to all fiber amplification system. In this paper, the master oscillator pulse nonlinear amplifier system based on all polarization- maintaining fiber is proposed, which is mainly composed of an oscillator based on the semiconductor saturable absorption mirror and linear cavity, a two-stage amplification and a pulse compressor constructed by a single-mode conductive fiber with anomalous dispersion. Using this system, we obtain ultrashort laser pulses in the 1.5 nm band whose pulse width equals 44 fs and single pulse energy reaches about 1 nJ. The system is not only compact and miniaturized but also stable and reliable due to the all polarization-maintaining fiber. Subsequently, an MgO doped periodically poled lithium niobite crystal with a thickness of 1 mm is used to implement frequency doubling. The pulses from the system are accurately focused on a position where the crystal polarization period is 19.8 μm with help of some wave plates and lenses. Adjusting the optical path reasonably and optimizing colliminated focusing parameters, the double-frequency pulse output with certral wavelength of 779 nm and average power of 60 W is obtained, in which the conversion efficiency reaches 30%. The result shows that the master oscillator pulse nonlinear amplifier system based on all polarization maintaining fiber can produce satisfactory ultrashort pulses. It is a new idea for generating the ultrashort femtosecond pulses in the near-infrared band.
      通信作者: 于佳, wizardyujia@163.com
    • 基金项目: 国家重点研发计划(批准号: 2016YFF0200700)、国家自然科学基金青年科学基金(批准号: 61701385)、陕西省光电测试与仪器技术重点实验室开放基金(批准号: 2016SZJ-60-2)、瞬态光学与光子技术国家重点实验室开放基金(批准号: SKLST201709)和中国科学院国家外国专家局“创新团队国际合作伙伴计划”资助的课题
      Corresponding author: Yu Jia, wizardyujia@163.com
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2016YFF0200700), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61701385), the Open Research Fund of Shaanxi Key Laboratory of Photoelectricity Measurement and Instrument Technology, China (Grant No. 2016SZSJ-60-2), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, China (Grant No. SKLST201709), and the CAS/SAFEA international Partnership Program for Creative Research Teams, China
    [1]

    付思 2013 硕士学位论文 (北京: 北京交通大学)

    Fu S 2013 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [2]

    Jazayerifar M, Warm S, Elschner R, Kroushkov D, Sackey I, Meuer C, Schubert C, Petermann K 2013 J. Lightwave Technol. 31 1454Google Scholar

    [3]

    Sinclair L C, Deschênes J D, Sonderhouse L, Swann W C, Khader I H, Baumann E, Newbury N R, Coddington I 2015 Rev. Sci. Instrum 86 081301Google Scholar

    [4]

    Meng F, Cao S Y, Zhao G Z, Zhao Y, Fang Z J 2015 Chin. J. Las. 42 0702012

    [5]

    景磊, 姚建铨, 陆颖, 黄晓慧 2012 天津大学学报 45 95

    Jing L, Yao J Q, Lu Y, Huang X H 2012 J. Tianjin Univ. 45 95

    [6]

    Li M, Liu K, Jing W C, Peng G D 2010 J. Opt. Soc. Korea 14 14Google Scholar

    [7]

    王强, 许可, 姚晨雨, 王震, 常军, 任伟 2018 中国激光 45 106

    Wang Q, Xu K, Yao C Y, Wang Z, Chang J, Ren W 2018 Chin. J. Las. 45 106

    [8]

    李彦, 黎珂钦, 金靖 2017 中国激光 44 253

    Li Y, Li K Q, Jin J 2017 Chin. J. Las. 44 253

    [9]

    Kang J Q, Kong C H, Feng P P, Li C, Luo Z C, Edmund Y L, Kevin K T, Kenneth K Y W 2018 Conference on Lasers and Electro-Optics San Jose, California, United State, May 13−18, 2018 pSW4J.5

    [10]

    Huang L, Zhou X, Tang S 2018 J. Biomed. Opt. 23 1

    [11]

    刘观辉, 裴丽, 宁提纲, 高篙, 李晶, 张义军 2012 物理学报 61 094205Google Scholar

    Liu G H, Pei L, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 094205Google Scholar

    [12]

    刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 物理学报 64 114210Google Scholar

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar

    [13]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar

    [14]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [15]

    Sobon G, Kaczmarek P R, Sliwinska D, Sotor J, Abramski K M 2014 IEEE J. Sel. Top. Quantum Electron. 20 492Google Scholar

    [16]

    李浪, 刘洋, 王超, 潘海峰 2016 激光技术 40 307Google Scholar

    Li L, Liu Y, Wang C, Pan H F 2016 Laser Technol. 40 307Google Scholar

    [17]

    Ou S M, Liu G Y, Lei H, Zhang Z G, Zhang Q M 2017 Chin. Phys. Lett. 34 074207Google Scholar

    [18]

    Sun J, Zhou Y, Dai Y T, Li J Q, Yin F F, Dai J, Xu K 2018 Appl. Opt. 57 1492Google Scholar

    [19]

    延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生 2009 物理学报 58 6296Google Scholar

    Yan F P, Mao X Q, Wang L, Fu Y J, Wei H, Zheng K, Gong T R, Liu P, Tao P L, Jian S S 2009 Acta Phys. Sin. 58 6296Google Scholar

    [20]

    Lü Z G, Yang Z, Li F, Yang X J, Tang X J, Yang Y, Li Q L, Wang Y S, Zhao W 2018 Laser Phys. 28 125103Google Scholar

    [21]

    Fermann M, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010Google Scholar

    [22]

    BoyD G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

  • 图 1  全保偏光纤MOPNA系统结构示意图 (a)振荡级; (b)放大级; (c)压缩级

    Fig. 1.  Schematic diagram of MOPNA system based on all polarization maintaining fiber: (a) Oscillator; (b) amplifier; (c) compressor.

    图 2  倍频光路结构示意图

    Fig. 2.  Experimental setup for frequency doubling.

    图 3  振荡器输出锁模脉冲特性 (a)光谱; (b)自相关曲线; (c)脉冲序列

    Fig. 3.  The oscillator output: (a) Spectrum curve; (b) autocorrelation curve; (c) pulse sequence.

    图 4  预放大级不同抽运功率下的光谱变化

    Fig. 4.  Variation of the spectrum profiles under different pump powers of the pre-amplifier.

    图 5  预放大级输出功率与抽运功率的变化关系

    Fig. 5.  The relationship between output power and pump power of the pre-amplifier.

    图 6  预放大级抽运功率为50 mW时对应的脉冲自相关曲线

    Fig. 6.  The autocorrelation curve of pre-amplified pulse corresponding to pump power of 50 mW.

    图 7  主放大级输出功率与抽运功率的变化关系

    Fig. 7.  The relationship between output power and pump power of the main amplifier.

    图 8  主放大级输出光谱

    Fig. 8.  The spectrum output from the main amplifier.

    图 9  不同输出功率下的最短脉宽及其对应的压缩光纤长度

    Fig. 9.  The pulse widths versus output powers and the lengths of compression fiber.

    图 10  压缩级输出脉冲特性 (a)光谱; (b)自相关曲线

    Fig. 10.  The optical spectrum: (a) Autocorrelation curve; (b) recompressed pulses.

    图 11  二次谐波的光谱

    Fig. 11.  The spectrum of second harmonic.

  • [1]

    付思 2013 硕士学位论文 (北京: 北京交通大学)

    Fu S 2013 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [2]

    Jazayerifar M, Warm S, Elschner R, Kroushkov D, Sackey I, Meuer C, Schubert C, Petermann K 2013 J. Lightwave Technol. 31 1454Google Scholar

    [3]

    Sinclair L C, Deschênes J D, Sonderhouse L, Swann W C, Khader I H, Baumann E, Newbury N R, Coddington I 2015 Rev. Sci. Instrum 86 081301Google Scholar

    [4]

    Meng F, Cao S Y, Zhao G Z, Zhao Y, Fang Z J 2015 Chin. J. Las. 42 0702012

    [5]

    景磊, 姚建铨, 陆颖, 黄晓慧 2012 天津大学学报 45 95

    Jing L, Yao J Q, Lu Y, Huang X H 2012 J. Tianjin Univ. 45 95

    [6]

    Li M, Liu K, Jing W C, Peng G D 2010 J. Opt. Soc. Korea 14 14Google Scholar

    [7]

    王强, 许可, 姚晨雨, 王震, 常军, 任伟 2018 中国激光 45 106

    Wang Q, Xu K, Yao C Y, Wang Z, Chang J, Ren W 2018 Chin. J. Las. 45 106

    [8]

    李彦, 黎珂钦, 金靖 2017 中国激光 44 253

    Li Y, Li K Q, Jin J 2017 Chin. J. Las. 44 253

    [9]

    Kang J Q, Kong C H, Feng P P, Li C, Luo Z C, Edmund Y L, Kevin K T, Kenneth K Y W 2018 Conference on Lasers and Electro-Optics San Jose, California, United State, May 13−18, 2018 pSW4J.5

    [10]

    Huang L, Zhou X, Tang S 2018 J. Biomed. Opt. 23 1

    [11]

    刘观辉, 裴丽, 宁提纲, 高篙, 李晶, 张义军 2012 物理学报 61 094205Google Scholar

    Liu G H, Pei L, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 094205Google Scholar

    [12]

    刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 物理学报 64 114210Google Scholar

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar

    [13]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar

    [14]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [15]

    Sobon G, Kaczmarek P R, Sliwinska D, Sotor J, Abramski K M 2014 IEEE J. Sel. Top. Quantum Electron. 20 492Google Scholar

    [16]

    李浪, 刘洋, 王超, 潘海峰 2016 激光技术 40 307Google Scholar

    Li L, Liu Y, Wang C, Pan H F 2016 Laser Technol. 40 307Google Scholar

    [17]

    Ou S M, Liu G Y, Lei H, Zhang Z G, Zhang Q M 2017 Chin. Phys. Lett. 34 074207Google Scholar

    [18]

    Sun J, Zhou Y, Dai Y T, Li J Q, Yin F F, Dai J, Xu K 2018 Appl. Opt. 57 1492Google Scholar

    [19]

    延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生 2009 物理学报 58 6296Google Scholar

    Yan F P, Mao X Q, Wang L, Fu Y J, Wei H, Zheng K, Gong T R, Liu P, Tao P L, Jian S S 2009 Acta Phys. Sin. 58 6296Google Scholar

    [20]

    Lü Z G, Yang Z, Li F, Yang X J, Tang X J, Yang Y, Li Q L, Wang Y S, Zhao W 2018 Laser Phys. 28 125103Google Scholar

    [21]

    Fermann M, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010Google Scholar

    [22]

    BoyD G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

  • [1] 田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉. 高效外腔倍频产生426 nm激光的实验研究. 物理学报, 2020, 69(4): 044201. doi: 10.7498/aps.69.20191417
    [2] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响. 物理学报, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [3] 董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇. 300 W侧面分布式抽运掺Yb全光纤放大器. 物理学报, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [4] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [5] 陈顺意, 丁攀峰, 蒲继雄. 离轴涡旋光束弱走离条件下的倍频效应. 物理学报, 2015, 64(24): 244204. doi: 10.7498/aps.64.244204
    [6] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [7] 陈国柱, 沈咏, 刘曲, 邹宏新. 利用椭圆高斯光束产生266nm紫外连续激光. 物理学报, 2014, 63(5): 054204. doi: 10.7498/aps.63.054204
    [8] 马俊建, 朱小芳, 金晓林, 胡玉禄, 李建清, 杨中海, 李斌. 回旋速调管放大器时域非线性理论与模拟. 物理学报, 2012, 61(20): 208402. doi: 10.7498/aps.61.208402
    [9] 孔艳岩, 张世昌. 加载静电压的同轴回旋管放大器的非线性模拟. 物理学报, 2011, 60(9): 095201. doi: 10.7498/aps.60.095201
    [10] 邓青华, 丁磊, 贺少勃, 唐军, 谢旭东, 卢振华, 董一芳. 光参量啁啾脉冲放大系统非线性晶体长度确定及调谐方法研究. 物理学报, 2010, 59(4): 2525-2531. doi: 10.7498/aps.59.2525
    [11] 黄金哲, 王宏, 常彦琴, 沈涛, Andreev Y. M., Shaiduko A. V.. BBO晶体倍频中的温度场与光场耦合模拟. 物理学报, 2010, 59(9): 6243-6249. doi: 10.7498/aps.59.6243
    [12] 刘茂桐, 杨爱英, 孙雨南. 强超短脉冲抽运下半导体光放大器中的非线性过程. 物理学报, 2009, 58(2): 980-988. doi: 10.7498/aps.58.980
    [13] 颜国君, 陈光德, 伍叶龙, 杨建清. 双折射吸收非线性介质薄膜中倍频的产生. 物理学报, 2008, 57(1): 265-270. doi: 10.7498/aps.57.265
    [14] 陈云琳, 袁建伟, 闫卫国, 周斌斌, 罗勇锋, 郭 娟. 准相位匹配PPLN倍频理论研究与优化设计. 物理学报, 2005, 54(5): 2079-2083. doi: 10.7498/aps.54.2079
    [15] 吴建伟, 夏光琼, 吴正茂. 基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析. 物理学报, 2004, 53(4): 1105-1109. doi: 10.7498/aps.53.1105
    [16] 王正平, 滕 冰, 杜晨林, 许心光, 傅 琨, 许贵宝, 王继扬, 邵宗书. 低对称性非线性光学晶体BIBO的倍频性质. 物理学报, 2003, 52(9): 2176-2184. doi: 10.7498/aps.52.2176
    [17] 徐光, 王韬, 朱鹤元, 钱列加, 范滇元, 李富铭. 级联χ2过程产生高量值高阶非线性相移. 物理学报, 2002, 51(10): 2261-2260. doi: 10.7498/aps.51.2261
    [18] 吕铁铮, 王韬, 钱列加, 鲁欣, 魏志义, 张杰. 飞秒激光在BBO晶体中倍频效率的数值计算. 物理学报, 2002, 51(6): 1268-1271. doi: 10.7498/aps.51.1268
    [19] 王正平, 邵耀鹏, 许心光, 王继扬, 刘耀岗, 魏景谦, 邵宗书. Nd:Ca4ReO(BO3)3(Re=Gd,Y)晶体最佳激光、最佳倍频及最佳自倍频方向的确定. 物理学报, 2002, 51(9): 2029-2033. doi: 10.7498/aps.51.2029
    [20] 赵尚弘, 陈国夫, 赵 卫, 王屹山, 于连君, 常 琳. 高效全固体脉冲蓝光系统实验研究. 物理学报, 2000, 49(7): 1273-1276. doi: 10.7498/aps.49.1273
计量
  • 文章访问数:  9673
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-15
  • 修回日期:  2019-08-29
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回