搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回旋速调管放大器时域非线性理论与模拟

马俊建 朱小芳 金晓林 胡玉禄 李建清 杨中海 李斌

引用本文:
Citation:

回旋速调管放大器时域非线性理论与模拟

马俊建, 朱小芳, 金晓林, 胡玉禄, 李建清, 杨中海, 李斌

A time-dependent nonlinear theory and simulation for gyroklystron amplifier

Ma Jun-Jian, Zhu Xiao-Fang, Jin Xiao-Lin, Hu Yu-Lu, Li Jian-Qing, Yang Zhong-Hai, Li Bin
PDF
导出引用
  • 研究了一种回旋速调管放大器时域非线性理论模型.该模型由广义电报方程来表示回旋速调管内的电磁 场,采用引导中心近似的电子运动方程来推动粒子,由粒子更新得到的电流密度为源激励电磁场. 基于上述理论模型,从回旋速调管电子注横向速度满足高斯分布出发,建立了速度分散的分布模型. 编写了相应的时域非线性注波互作用模拟程序,对回旋速调管放大器的注波互作用进行了深入的分析和研究, 并应用粒子模拟软件与自洽非线性模拟程序进行对比验证,两者结果基本一致.
    A time-dependent nonlinear theory for gyroklystron amplifier is presented. The theory includes a time-dependent description of the electromagnetic fields and a self-consistent analysis of the electrons. The generalized telegrapher equations represent the electromagnetic fields. The equations of motion of the electrons are described in the framework of the guiding-center approximation. All trajectories are calculated and used as current sources for the fields. The nonlinear theory of interaction is investigated in which mode coupling is taken into account in varying wall radius. Transverse velocity of the electrons from the gyroklystron amplifier satisfies Gaussian distribution. Distribution model of the velocity spread in the gyroklystron amplifier beam-wave interaction is established. A code for the self-consistent nonlinear beam-wave interaction is developed based on the presented theory. The electron beam-wave interaction of a Kα band gyroklystron amplifier is thoroughly studied and analyzed by the code. Numerical verification using MAGIC simulation is also given. The numerical results are in good agreement with the self-consistent nonlinear simulations.
    • 基金项目: 国家自然科学基金(批准号: 60931001, 61071030, 10905009)和 中央高校基本科研业务费(批准号: ZYGX2011J040, ZYGX2010J052)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60931001, 61071030, 10905009) and the Fundamental Research Fund for the Central Universities, China (Grant Nos. ZYGX2011J040, ZYGX2010J052).
    [1]

    Liu P K, Xu S X 2003 J. Electron. Inform. Technol. 25 683 (in Chinese) [刘濮鲲, 徐寿喜 2003 电子与信息学报 25 683]

    [2]

    Liu S G 1987 Theory of Relativity Electronics (Beijing: Science Press) p324 (in Chinese) [刘盛纲 1987 相对论电子学 (北京:科学出版社) 第324页]

    [3]

    Latham P E, Lawson W, Irwin V 1994 IEEE Trans. Plasma Sci. 22 804

    [4]

    Botton M, Antonsen Jr T M, Levush B, Nguyen K T, Vlasov A N 1998 IEEE Trans. Plasma Sci. 26 882

    [5]

    Choi J J, McCurdy A H, Wood F N, Kyser R H, Calame J P, Nguyen K T, Danly B G, Antonsen Jr T M, Levush B, Parker R K 1998 IEEE Trans. Plasma Sci. 26 416

    [6]

    Garven M, Calame J P, Nguyen K T, Danly B G, Levush B, Wood F N 1998 IEEE Trans. Plasma Sci. 26 882

    [7]

    Xu S X 2004 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [徐寿喜 2004 博士学位论文(北京:中国科学院电子学研究所)]

    [8]

    Liang X F 2004 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [梁显锋 2004 博士学位论文(北京:中国科学院电子学研究所)]

    [9]

    Geng Z H 2005 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [耿志辉 2005 博士学位论文(北京:中国科学院电子学研究所)]

    [10]

    Liu Y H 2008 Ph. D. Dissertation (Chengdou: University of Electronic Science and Technology of China) (in Chinese) [刘迎辉 2008 博士学位论文(成都:电子科技大学)]

    [11]

    Liu Y H, Li H F, Li H 2006 Acta Phys. Sin. 55 1718 (in Chinese) [刘迎辉, 李宏福, 李浩 2006 物理学报 55 1718]

    [12]

    Xu Y, Luo Y, Xiong C D, Li H F, Deng X, Pu Y L, Wang H, Wang J X, Yan R 2011 Acta Phys. Sin. 60 757 (in Chinese) [徐勇, 罗勇, 熊彩东, 李宏福, 邓学, 蒲友雷, 王晖, 王建勋, 鄢然 2011 物理学报 60 757]

    [13]

    Liu D W 2009 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘頔威 2009 博士学位论文(成都:电子科技大学)]

    [14]

    Reiter G 1959 Convention on Long Distance Transmission by Waveguide (Philadelphia: Institution of Electrical Engineers) pp54-57

    [15]

    Neilson J M, Latham P E, Caplan A, Lawson W G 1989 IEEE Trans. Microw. Theory Tech. 37 1165

    [16]

    Kartikeyan M V, Edith B, Manfred K A T 2004 Gyrotrons: High Power Microwave and Millimeter Wave Technology (New York: Springer) p33

    [17]

    Gregory S N, Hai L 1992 IEEE Trans. Plasma Sci. 20 170

    [18]

    Khanh T N, Gun S P, Jin J C, Soo Y P, Robert K P 1996 IEEE Trans. Electron Dev. 43 655

  • [1]

    Liu P K, Xu S X 2003 J. Electron. Inform. Technol. 25 683 (in Chinese) [刘濮鲲, 徐寿喜 2003 电子与信息学报 25 683]

    [2]

    Liu S G 1987 Theory of Relativity Electronics (Beijing: Science Press) p324 (in Chinese) [刘盛纲 1987 相对论电子学 (北京:科学出版社) 第324页]

    [3]

    Latham P E, Lawson W, Irwin V 1994 IEEE Trans. Plasma Sci. 22 804

    [4]

    Botton M, Antonsen Jr T M, Levush B, Nguyen K T, Vlasov A N 1998 IEEE Trans. Plasma Sci. 26 882

    [5]

    Choi J J, McCurdy A H, Wood F N, Kyser R H, Calame J P, Nguyen K T, Danly B G, Antonsen Jr T M, Levush B, Parker R K 1998 IEEE Trans. Plasma Sci. 26 416

    [6]

    Garven M, Calame J P, Nguyen K T, Danly B G, Levush B, Wood F N 1998 IEEE Trans. Plasma Sci. 26 882

    [7]

    Xu S X 2004 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [徐寿喜 2004 博士学位论文(北京:中国科学院电子学研究所)]

    [8]

    Liang X F 2004 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [梁显锋 2004 博士学位论文(北京:中国科学院电子学研究所)]

    [9]

    Geng Z H 2005 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [耿志辉 2005 博士学位论文(北京:中国科学院电子学研究所)]

    [10]

    Liu Y H 2008 Ph. D. Dissertation (Chengdou: University of Electronic Science and Technology of China) (in Chinese) [刘迎辉 2008 博士学位论文(成都:电子科技大学)]

    [11]

    Liu Y H, Li H F, Li H 2006 Acta Phys. Sin. 55 1718 (in Chinese) [刘迎辉, 李宏福, 李浩 2006 物理学报 55 1718]

    [12]

    Xu Y, Luo Y, Xiong C D, Li H F, Deng X, Pu Y L, Wang H, Wang J X, Yan R 2011 Acta Phys. Sin. 60 757 (in Chinese) [徐勇, 罗勇, 熊彩东, 李宏福, 邓学, 蒲友雷, 王晖, 王建勋, 鄢然 2011 物理学报 60 757]

    [13]

    Liu D W 2009 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘頔威 2009 博士学位论文(成都:电子科技大学)]

    [14]

    Reiter G 1959 Convention on Long Distance Transmission by Waveguide (Philadelphia: Institution of Electrical Engineers) pp54-57

    [15]

    Neilson J M, Latham P E, Caplan A, Lawson W G 1989 IEEE Trans. Microw. Theory Tech. 37 1165

    [16]

    Kartikeyan M V, Edith B, Manfred K A T 2004 Gyrotrons: High Power Microwave and Millimeter Wave Technology (New York: Springer) p33

    [17]

    Gregory S N, Hai L 1992 IEEE Trans. Plasma Sci. 20 170

    [18]

    Khanh T N, Gun S P, Jin J C, Soo Y P, Robert K P 1996 IEEE Trans. Electron Dev. 43 655

  • [1] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [2] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [3] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [4] 邱海舰, 胡玉禄, 胡权, 朱小芳, 李斌. 考虑谐波互作用的行波管欧拉非线性理论模型. 物理学报, 2018, 67(8): 088401. doi: 10.7498/aps.67.20180024
    [5] 赵丽梅, 张国锋. 带有Dzyaloshinski-Mariya相互作用的两比特纠缠量子Otto热机和量子Stirling热机. 物理学报, 2017, 66(24): 240502. doi: 10.7498/aps.66.240502
    [6] 李倩文, 李莹, 张荣, 卢灿灿, 白龙. 线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率. 物理学报, 2017, 66(13): 130502. doi: 10.7498/aps.66.130502
    [7] 吕明, 宁智, 阎凯. 线性与非线性稳定性理论下液体射流空间发展的对比研究. 物理学报, 2016, 65(16): 166801. doi: 10.7498/aps.65.166801
    [8] 郑世燕. 以广义Redlich-Kwong气体为工质的不可逆回热式斯特林热机循环输出功率和效率. 物理学报, 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [9] 覃觅觅, 罗勇, 杨阔, 黄勇. 170GHz兆瓦级同轴回旋振荡管的分析计算. 物理学报, 2014, 63(5): 050203. doi: 10.7498/aps.63.050203
    [10] 肖尧, 郑建风. 复杂交通运输网络上的拥挤与效率问题研究. 物理学报, 2013, 62(17): 178902. doi: 10.7498/aps.62.178902
    [11] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [12] 李飞, 肖刘, 刘濮鲲, 袁广江, 易红霞, 万晓声. 行波管中多级降压收集极效率评估的研究. 物理学报, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [13] 段羽, 陈平, 赵毅, 刘式墉. 新型有机白光器件的初步研究. 物理学报, 2011, 60(7): 077805. doi: 10.7498/aps.60.077805
    [14] 周庆, 陈钢, 胡月. 一个用简单物理模型构建的加密系统. 物理学报, 2011, 60(4): 044701. doi: 10.7498/aps.60.044701
    [15] 姜文龙, 丛林, 孟昭晖, 汪津, 韩强, 孟凡超, 王立忠, 丁桂英, 张刚. 室温下磁场对基于Alq3的有机电致发光器件的影响. 物理学报, 2010, 59(5): 3571-3576. doi: 10.7498/aps.59.3571
    [16] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光. 物理学报, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [17] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [18] 曾广根, 郑家贵, 黎 兵, 雷 智, 武莉莉, 蔡亚平, 李 卫, 张静全, 蔡 伟, 冯良桓. 具有高阻抗本征SnO2过渡层的CdS/CdTe多晶薄膜太阳电池. 物理学报, 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [19] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [20] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
计量
  • 文章访问数:  4257
  • PDF下载量:  496
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-10
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-10-05

回旋速调管放大器时域非线性理论与模拟

  • 1. 电子科技大学物理电子学院,微波电真空器件国家级重点实验室, 成都 610054
    基金项目: 国家自然科学基金(批准号: 60931001, 61071030, 10905009)和 中央高校基本科研业务费(批准号: ZYGX2011J040, ZYGX2010J052)资助的课题.

摘要: 研究了一种回旋速调管放大器时域非线性理论模型.该模型由广义电报方程来表示回旋速调管内的电磁 场,采用引导中心近似的电子运动方程来推动粒子,由粒子更新得到的电流密度为源激励电磁场. 基于上述理论模型,从回旋速调管电子注横向速度满足高斯分布出发,建立了速度分散的分布模型. 编写了相应的时域非线性注波互作用模拟程序,对回旋速调管放大器的注波互作用进行了深入的分析和研究, 并应用粒子模拟软件与自洽非线性模拟程序进行对比验证,两者结果基本一致.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回