搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率

李倩文 李莹 张荣 卢灿灿 白龙

引用本文:
Citation:

线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率

李倩文, 李莹, 张荣, 卢灿灿, 白龙

Efficiency at arbitrary power for the Curzon-Ahlborn heat engine in linear and nonlinear heat transfer processes

Li Qian-Wen, Li Ying, Zhang Rong, Lu Can-Can, Bai Long
PDF
导出引用
  • 热机性能的优化是热力学领域的一个重要问题,而工质与热源之间的传热过程是热机工作时产生不可逆的主要来源.本文在引入功率增益和效率增益两个重要参数的基础上,基于一个简化的Curzon-Ahlborn热机模型并利用合比分比原理,给出了线性与非线性传热过程的热机在任意功率输出时的效率表达式,结合数值计算详细讨论了热机在任意功率输出时的特性.研究表明,参数作为功率增益P的函数存在两个分支:在第一分支上(不利情形),效率呈现出单调变化特征;在第二分支上(有利情形),效率随着的P变化是非单调的且有最大值.随着传热指数的增加,热机的工作区域减小,这源于非线性传热过程包含热辐射所致.进一步发现功率-效率关系曲线存在权衡工作点,热机在该点附近工作能够实现最有效的热功转换.研究结果有助于深入理解具有不同传热过程热机的优化执行.
    The optimal performance of heat engine is an important issue in thermodynamics, but the heat transfer between the working medium and two heat reservoirs induces the irreversibility during the operation of heat engine. Based on two important parameters introduced in this paper(namely, the power gain and the efficiency gain), for heat engine operating in the linear and nonlinear heat transfer processes, the formula for the efficiency at arbitrary power is achieved in terms of a simplified Curzon-Ahlborn heat engine model and the componendo and dividendo rule. The features of heat engine at arbitrary power output are also discussed in detail based on the numerical calculations. It is indicated that the parameter as a function of the power gain P contains two branches:the efficiency shows the monotonous variation on the first branch (the favorable case); the efficiency exhibits the non-monotonous characteristics and has the maximum value on the second branch(the unfavorable case). The working region of the heat engine is reduced as the heat transfer exponent increases, which results from the radiative contribution in the nonlinear heat transfer process. For the first branch, the contour-line plot of versus TL/TH and P clearly demonstrates that has the decreasing trend with increasing TL/TH and|P|; for the second branch, monotonically deceases as TL/TH increases, but shows the non-monotonic behaviors as|P|increases. The efficiency has the maximum value in the region where TL/TH and|P|have the small values, and the working regime of heat engines in the nonlinear heat transfer process is relatively small due to the complexity of the nonlinear heat transfer process. The curves of the efficiency in two heat transfer processes are loop-shaped, when|P| 0 and|P| 1, the curves of ~P in two heat transfer processes are same. But in other regimes, the efficiency of the heat engine with the linear heat transfer process is bigger than in the nonlinear heat transfer process. Furthermore, it is found that a considerably larger efficiency can be obtained when heat engine working close to the maximum power. This implies that there exists the trade-off working point where the heat engine can perform the most effective heat-work conversion. In addition, the curves of the power gain vs. the efficiency gain also display the loop-shaped characteristics, but there is the weak difference on the second branch. Our results are very conducive to understanding the optimal performance of heat engines in different heat transfer processes.
      通信作者: 白龙, bailong2200@163.com
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:2015XKMS082)资助的课题.
      Corresponding author: Bai Long, bailong2200@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.2015XKMS082).
    [1]

    Curzon F, Ahlborn B 1975 Am. J. Phys. 43 22

    [2]

    Vaudrey A, Lanzetta F, Feidt M 2014 J. Non-Equil. Therm. 39 199

    [3]

    Andresen B 2011 Angew. Chem. Int. Ed. 50 2690

    [4]

    Chen L G, Sun F R 1998 Acta Phys. Sin. 18 395 (in Chinese)[陈林根, 孙丰瑞 1998 物理学报 18 395]

    [5]

    van den Broeck C 2005 Phys. Rev. Lett. 95 190602

    [6]

    Angulo-Brown F, Phez-Hernhndez F 1993 J. Appl. Phys. 74 2216

    [7]

    Huleihil M, Andresen B 2006 J. Appl. Phys. 100 014911

    [8]

    Chen L, Sun F, Wu C 1999 J. Phys. D:Appl. Phys. 32 99

    [9]

    Zhou S, Chen L, Sun F, Wu C 2005 Appl. Energy 81 376

    [10]

    Chen L, Li J, Sun F 2008 Appl. Energy 85 52

    [11]

    Chen L, Sun F, Wu C 2006 Appl. Energy 83 71

    [12]

    Cheng X T, Wang W H, Liang X G 2012 Chin. Sci. Bull. 55 2847

    [13]

    Arias-Hernandez L A, Ares de Prarga G, Angulo-Brown F 2003 Open Sys. Informat. Dyn. 10 351

    [14]

    Li J, Chen L, Sun F 2007 Appl. Energy 84 944

    [15]

    Shu L W, Chen L, Sun F 2009 Sci. China Ser. B:Chem. 52 1154

    [16]

    Chimal-Eguia J C, Barranco-Jimenez M A 2006 Open Sys. Informat. Dyn. 13 43

    [17]

    Whitney R S 2014 Phys. Rev. Lett. 112 130601

    [18]

    Whitney R S 2015 Phys. Rev. B 91 115425

    [19]

    Holubec V, Ryabov A 2016 J. Stat. Mech. 2016 073204

    [20]

    Long R, Liu W 2016 Phys. Rev. E 90 052114

    [21]

    Ryabov A, Holubec V 2016 Phys. Rev. E 93 050101

    [22]

    Agrawal D C 2009 Eur. J. Phys. 30 1173

    [23]

    Paez-Hernandz R T, Portillo-Diaz P, Ladino-Luna D 2016 J. Non-Equil. Therm. 41 19

  • [1]

    Curzon F, Ahlborn B 1975 Am. J. Phys. 43 22

    [2]

    Vaudrey A, Lanzetta F, Feidt M 2014 J. Non-Equil. Therm. 39 199

    [3]

    Andresen B 2011 Angew. Chem. Int. Ed. 50 2690

    [4]

    Chen L G, Sun F R 1998 Acta Phys. Sin. 18 395 (in Chinese)[陈林根, 孙丰瑞 1998 物理学报 18 395]

    [5]

    van den Broeck C 2005 Phys. Rev. Lett. 95 190602

    [6]

    Angulo-Brown F, Phez-Hernhndez F 1993 J. Appl. Phys. 74 2216

    [7]

    Huleihil M, Andresen B 2006 J. Appl. Phys. 100 014911

    [8]

    Chen L, Sun F, Wu C 1999 J. Phys. D:Appl. Phys. 32 99

    [9]

    Zhou S, Chen L, Sun F, Wu C 2005 Appl. Energy 81 376

    [10]

    Chen L, Li J, Sun F 2008 Appl. Energy 85 52

    [11]

    Chen L, Sun F, Wu C 2006 Appl. Energy 83 71

    [12]

    Cheng X T, Wang W H, Liang X G 2012 Chin. Sci. Bull. 55 2847

    [13]

    Arias-Hernandez L A, Ares de Prarga G, Angulo-Brown F 2003 Open Sys. Informat. Dyn. 10 351

    [14]

    Li J, Chen L, Sun F 2007 Appl. Energy 84 944

    [15]

    Shu L W, Chen L, Sun F 2009 Sci. China Ser. B:Chem. 52 1154

    [16]

    Chimal-Eguia J C, Barranco-Jimenez M A 2006 Open Sys. Informat. Dyn. 13 43

    [17]

    Whitney R S 2014 Phys. Rev. Lett. 112 130601

    [18]

    Whitney R S 2015 Phys. Rev. B 91 115425

    [19]

    Holubec V, Ryabov A 2016 J. Stat. Mech. 2016 073204

    [20]

    Long R, Liu W 2016 Phys. Rev. E 90 052114

    [21]

    Ryabov A, Holubec V 2016 Phys. Rev. E 93 050101

    [22]

    Agrawal D C 2009 Eur. J. Phys. 30 1173

    [23]

    Paez-Hernandz R T, Portillo-Diaz P, Ladino-Luna D 2016 J. Non-Equil. Therm. 41 19

  • [1] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [2] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [3] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [4] 赵丽梅, 张国锋. 带有Dzyaloshinski-Mariya相互作用的两比特纠缠量子Otto热机和量子Stirling热机. 物理学报, 2017, 66(24): 240502. doi: 10.7498/aps.66.240502
    [5] 覃觅觅, 罗勇, 杨阔, 黄勇. 170GHz兆瓦级同轴回旋振荡管的分析计算. 物理学报, 2014, 63(5): 050203. doi: 10.7498/aps.63.050203
    [6] 郑世燕. 以广义Redlich-Kwong气体为工质的不可逆回热式斯特林热机循环输出功率和效率. 物理学报, 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [7] 肖尧, 郑建风. 复杂交通运输网络上的拥挤与效率问题研究. 物理学报, 2013, 62(17): 178902. doi: 10.7498/aps.62.178902
    [8] 马俊建, 朱小芳, 金晓林, 胡玉禄, 李建清, 杨中海, 李斌. 回旋速调管放大器时域非线性理论与模拟. 物理学报, 2012, 61(20): 208402. doi: 10.7498/aps.61.208402
    [9] 李飞, 肖刘, 刘濮鲲, 袁广江, 易红霞, 万晓声. 行波管中多级降压收集极效率评估的研究. 物理学报, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [10] 段羽, 陈平, 赵毅, 刘式墉. 新型有机白光器件的初步研究. 物理学报, 2011, 60(7): 077805. doi: 10.7498/aps.60.077805
    [11] 周庆, 陈钢, 胡月. 一个用简单物理模型构建的加密系统. 物理学报, 2011, 60(4): 044701. doi: 10.7498/aps.60.044701
    [12] 毕津顺, 海潮和, 韩郑生. 深亚微米SOI射频 LDMOS功率特性研究. 物理学报, 2011, 60(1): 018501. doi: 10.7498/aps.60.018501
    [13] 姜文龙, 丛林, 孟昭晖, 汪津, 韩强, 孟凡超, 王立忠, 丁桂英, 张刚. 室温下磁场对基于Alq3的有机电致发光器件的影响. 物理学报, 2010, 59(5): 3571-3576. doi: 10.7498/aps.59.3571
    [14] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光. 物理学报, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [15] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响. 物理学报, 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [17] 曾广根, 郑家贵, 黎 兵, 雷 智, 武莉莉, 蔡亚平, 李 卫, 张静全, 蔡 伟, 冯良桓. 具有高阻抗本征SnO2过渡层的CdS/CdTe多晶薄膜太阳电池. 物理学报, 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [20] 陈建文, 傅淑芬, 刘妙宏. 高功率、高效率放电激励XeBr激光器. 物理学报, 1980, 29(6): 799-802. doi: 10.7498/aps.29.799
计量
  • 文章访问数:  3411
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-31
  • 修回日期:  2017-04-28
  • 刊出日期:  2017-07-05

线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率

    基金项目: 中央高校基本科研业务费专项资金(批准号:2015XKMS082)资助的课题.

摘要: 热机性能的优化是热力学领域的一个重要问题,而工质与热源之间的传热过程是热机工作时产生不可逆的主要来源.本文在引入功率增益和效率增益两个重要参数的基础上,基于一个简化的Curzon-Ahlborn热机模型并利用合比分比原理,给出了线性与非线性传热过程的热机在任意功率输出时的效率表达式,结合数值计算详细讨论了热机在任意功率输出时的特性.研究表明,参数作为功率增益P的函数存在两个分支:在第一分支上(不利情形),效率呈现出单调变化特征;在第二分支上(有利情形),效率随着的P变化是非单调的且有最大值.随着传热指数的增加,热机的工作区域减小,这源于非线性传热过程包含热辐射所致.进一步发现功率-效率关系曲线存在权衡工作点,热机在该点附近工作能够实现最有效的热功转换.研究结果有助于深入理解具有不同传热过程热机的优化执行.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回